Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Guen, Vincent Le"'
State-of-the-art methods for optical flow estimation rely on deep learning, which require complex sequential training schemes to reach optimal performances on real-world data. In this work, we introduce the COMBO deep network that explicitly exploits
Externí odkaz:
http://arxiv.org/abs/2207.03790
Autor:
Guen, Vincent Le
This thesis tackles the subject of spatio-temporal forecasting with deep learning. The motivating application at Electricity de France (EDF) is short-term solar energy forecasting with fisheye images. We explore two main research directions for impro
Externí odkaz:
http://arxiv.org/abs/2205.03571
Autor:
Guen, Vincent Le, Thome, Nicolas
This paper addresses the problem of multi-step time series forecasting for non-stationary signals that can present sudden changes. Current state-of-the-art deep learning forecasting methods, often trained with variants of the MSE, lack the ability to
Externí odkaz:
http://arxiv.org/abs/2104.04610
Autor:
Guen, Vincent Le, Thome, Nicolas
Probabilistic forecasting consists in predicting a distribution of possible future outcomes. In this paper, we address this problem for non-stationary time series, which is very challenging yet crucially important. We introduce the STRIPE model for r
Externí odkaz:
http://arxiv.org/abs/2010.07349
Autor:
Yin, Yuan, Guen, Vincent Le, Dona, Jérémie, de Bézenac, Emmanuel, Ayed, Ibrahim, Thome, Nicolas, Gallinari, Patrick
Publikováno v:
J. Stat. Mech. (2021) 124012
Forecasting complex dynamical phenomena in settings where only partial knowledge of their dynamics is available is a prevalent problem across various scientific fields. While purely data-driven approaches are arguably insufficient in this context, st
Externí odkaz:
http://arxiv.org/abs/2010.04456
Autor:
Guen, Vincent Le, Thome, Nicolas
Leveraging physical knowledge described by partial differential equations (PDEs) is an appealing way to improve unsupervised video prediction methods. Since physics is too restrictive for describing the full visual content of generic videos, we intro
Externí odkaz:
http://arxiv.org/abs/2003.01460
Autor:
Guen, Vincent Le, Thome, Nicolas
This paper addresses the problem of time series forecasting for non-stationary signals and multiple future steps prediction. To handle this challenging task, we introduce DILATE (DIstortion Loss including shApe and TimE), a new objective function for
Externí odkaz:
http://arxiv.org/abs/1909.09020
Autor:
Aono, Alexandre Hild, Francisco, Felipe Roberto, Souza, Livia Moura, Gonçalves, Paulo de Souza, Scaloppi, Erivaldo J., Guen, Vincent Le, Fritsche-Neto, Roberto, Gorjanc, Gregor, Quiles, Marcos Gonçalves, de Souza, Anete Pereira
Publikováno v:
Aono, A H, Francisco, F R, Souza, L M, Gonçalves, P D S, Scaloppi, E J, Guen, V L, Fritsche-Neto, R, Gorjanc, G, Quiles, M G & de Souza, A P 2022 ' A divide-and-conquer approach for genomic prediction in rubber tree using machine learning ' bioRxiv . https://doi.org/10.1101/2022.03.30.486381
Rubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its long vegetative cycle has hindered the development of more productive varieties via breeding programs. With the availability of H. brasiliensis genomic data, s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3094::0bcdb807d07c6e4e00ba02e5c68ec444
https://hdl.handle.net/20.500.11820/8c8ff985-0de3-4853-ac3e-e5229fbfb144
https://hdl.handle.net/20.500.11820/8c8ff985-0de3-4853-ac3e-e5229fbfb144
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rosa, João, Mantello, Camila, Garcia, Dominique, Souza, Lívia De, Silva, Carla Da, Gazaffi, Rodrigo, Cícero Da Silva, Toledo-Silva, Guilherme, Cubry, Philippe, Garcia, Antonio, Souza, Anete De, Guen, Vincent Le
Table S1 Summarized description of the genetic linkage map of the PR 255 x PB 217 F1 population. Table S2. Different variance-covariance structures for the genetic matrix related to height, circumference, and latex production traits. Table S3. Differ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::439029c161f1e7e04e9a84024d5ead53