Zobrazeno 1 - 10
of 155
pro vyhledávání: '"Guangshi Lü"'
Autor:
Guangwei Hu, Guangshi Lü
Publikováno v:
Journal of Number Theory. 242:709-724
Publikováno v:
Proceedings of the American Mathematical Society. 151:475-488
In this article we unconditionally show that { μ ( n ) } \{\mu (n)\} is asymptotically orthogonal to { λ π ( n ) e ( n α ) } \{\lambda _{\pi }(n)e(n\alpha )\} where λ π ( n ) \lambda _{\pi }(n) is the n n -th Dirichlet coefficient of a GL (
Autor:
Yujiao Jiang, Guangshi Lü
Publikováno v:
International Mathematics Research Notices.
Let $\lambda _{\phi }(n)$ be the Fourier coefficients of a Hecke holomorphic or Hecke–Maass cusp form on $\textrm{SL}_{2}(\mathbb Z)$ and $f$ be any multiplicative function that satisfies two mild hypotheses. We establish a nontrivial upper bound f
Autor:
Guangwei Hu, Guangshi Lü
Publikováno v:
The Ramanujan Journal. 56:555-584
Let $$\lambda _\pi (1,\ldots ,1,n)$$ be the normalized Fourier coefficients of an even Hecke–Maass form $$\pi $$ for $$SL(m, {\mathbb {Z}})$$ with $$m\ge 3$$ , and $$r_{3}(n)=\#\{(n_1,n_2,n_3)\in {\mathbb {Z}}^3:n=n_1^2+n_2^2+n_3^2\}$$ . In this pa
Autor:
Guangshi Lü, Yujiao Jiang
Publikováno v:
Forum Mathematicum. 33:1061-1082
Let π be an automorphic irreducible cuspidal representation of GL m {\operatorname{GL}_{m}} over ℚ {\mathbb{Q}} with unitary central character, and let λ π ( n ) {\lambda_{\pi}(n)} be its n-th Dirichlet series coefficient. We study short sum
Publikováno v:
Mathematika. 67:678-713
Autor:
Guangshi Lü, Guangwei Hu
Publikováno v:
Journal of Number Theory. 220:61-74
Let d k ( n ) denote the k-th divisor function. In this paper, we study the asymptotic formula of the sum ∑ 1 ≤ n 1 , n 2 , … , n l ≤ x d k ( n 1 2 + n 2 2 + ⋯ + n l 2 ) , where n 1 , n 2 , … , n l ∈ Z + , k ≥ 4 and l ≥ 3 are intege