Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Guaiqi Tian"'
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-16 (2024)
Abstract In this work, we study the following Schrödinger-Poisson system { − Δ H u + μ ϕ u = λ u − γ , in Ω , − Δ H ϕ = u 2 , in Ω , u > 0 , in Ω , u = ϕ = 0 , on ∂ Ω , $$ \textstyle\begin{cases} -\Delta _{H}u+\mu \phi u=\lambda
Externí odkaz:
https://doaj.org/article/f4650a6f0a6141e399f0bb1e30b2e0d4
Publikováno v:
Electronic Research Archive, Vol 30, Iss 12, Pp 4493-4506 (2022)
In this article, we study the following bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth: $ \begin{equation*} \begin{cases} -\left( \int_{\Omega}|\nabla u|^2dx\right)^r\Delta u+\phi u = u^5+\lambda\left( \i
Externí odkaz:
https://doaj.org/article/3c62fb636e634527b84a208c529c1d32
Publikováno v:
AIMS Mathematics, Vol 7, Iss 5, Pp 7909-7935 (2022)
In this paper, we study the multiplicity results of positive solutions for a class of Kirchhoff type problems with singularity and critical exponents. Combining with the Nehari method and variational method, we prove the existence of positive ground
Externí odkaz:
https://doaj.org/article/213046801dc74cca874d643ac252121a
Publikováno v:
Electronic Research Archive. 30:4493-4506
In this article, we study the following bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth: \begin{document}$ \begin{equation*} \begin{cases} -\left( \int_{\Omega}|\nabla u|^2dx\right)^r\Delta u+\phi u = u^5+\la