Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Gu, Zhongyang"'
In this paper, we prove that a local weak solution to the $d$-dimensional incompressible Navier-Stokes equations ($d \geq 2$) can be constructed by taking the hydrodynamic limit of a velocity-discretized Boltzmann equation with a simplified BGK colli
Externí odkaz:
http://arxiv.org/abs/2407.20804
Autor:
Giga, Yoshikazu, Gu, Zhongyang
A dryout point is recognized as the position where the phase transition from liquid to vapor occurs. In the one-dimensional case, by solving the stationary incompressible Navier-Stokes-Fourier equations with phase transition, we derive a necessary an
Externí odkaz:
http://arxiv.org/abs/2403.15718
Autor:
Gu, Zhongyang
The $bmo$ space, also known as the local $BMO$ space, is the $BMO$ space which is uniformly locally $L^1$ in addition. In this article, we establish an extension theorem for the $bmo$ space defined in an arbitrary uniformly $C^2$ domain. This extensi
Externí odkaz:
http://arxiv.org/abs/2310.18889
Adding some nontrivial terms composed from a microstructure, we prove the existence of a global-in-time weak solution, whose enstrophy is bounded for all the time, to an incompressible 3D Navier-Stokes-Fourier system for arbitrary initial data. It ca
Externí odkaz:
http://arxiv.org/abs/2308.00363
Autor:
Giga, Yoshikazu, Gu, Zhongyang
We consider a space of $L^2$ vector fields with bounded mean oscillation whose ``normal'' component to the boundary is well-controlled. In the case when the dimension $n \geq 3$, we establish its Helmholtz decomposition for arbitrary uniformly $C^3$
Externí odkaz:
http://arxiv.org/abs/2307.09842
Autor:
Giga, Yoshikazu, Gu, Zhongyang
We introduce a space of $L^2$ vector fields with bounded mean oscillation whose normal component to the boundary is well-controlled. We establish its Helmholtz decomposition in the case when the domain is a perturbed $C^3$ half space in $\mathbf{R}^n
Externí odkaz:
http://arxiv.org/abs/2301.02701
Autor:
Giga, Yoshikazu, Gu, Zhongyang
We introduce a space of vector fields with bounded mean oscillation whose ``tangential'' and ``normal'' components to the boundary behave differently. We establish its Helmholtz decomposition when the domain is bounded. This substantially extends the
Externí odkaz:
http://arxiv.org/abs/2110.00826
Autor:
Giga, Yoshikazu, Gu, Zhongyang
We introduce various spaces of vector fields of bounded mean oscillation ($BMO$) defined in a domain so that normal trace on the boundary is bounded when its divergence is well controlled. The behavior of "normal" component and "tangential" component
Externí odkaz:
http://arxiv.org/abs/2011.12029
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.