Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Gu, Ruihao"'
Autor:
Gu, Ruihao, Li, Wenchao
Let $\Psi$ be an endomorphism of a nilmanifold $M = N/\Gamma$. We show that the preimages of a point under $\Psi$ become dense exponentially if and only if $\Psi$ is totally non-invertible, which means $(M, \Psi)$ has no invertible factors of quotien
Externí odkaz:
http://arxiv.org/abs/2404.04196
Autor:
Gu, Ruihao, Xia, Mingyang
Let $f$ be a non-invertible partially hyperbolic endomorphism on $\mathbb{T}^2$ which is derived from a non-expanding Anosov endomorphism. Differing from the case of diffeomorphisms derived from Anosov automorphisms, there is no a priori semi-conjuga
Externí odkaz:
http://arxiv.org/abs/2311.12669
Autor:
Gu, Ruihao
In this paper, we focus on the rigidity of $C^{2+}$-smooth codimension-one stable foliations of Anosov diffeomorphisms. Specifically, we show that if the regularity of these foliations is slightly bigger than $2$, then they will have the same smoothn
Externí odkaz:
http://arxiv.org/abs/2310.19088
Autor:
Gu, Ruihao
For a family of skew product endomorphisms on closed surface $f_{\phi}(x,y)=\big(l x\ , \ y+\phi(x)\big)$, where $l\in \mathbb{N}_{\geq 2}$ and $\phi: S^1\to \mathbb{R}$ is a $C^r\ (r>1)$ function, we get a dichotomy on the cohomology class of $\phi$
Externí odkaz:
http://arxiv.org/abs/2307.08282
Autor:
Gu, Ruihao, Shi, Yi
In this paper, we give a complete topological and smooth classification of non-invertible Anosov maps on torus. We show that two non-invertible Anosov maps on torus are topologically conjugate if and only if their corresponding periodic points have t
Externí odkaz:
http://arxiv.org/abs/2212.11457
Autor:
Yu, Daohua, Gu, Ruihao
Let f and g be two Anosov diffeomorphisms on T3 with three-subbundles partially hyperbolic splittings where the weak stable subbundles are considered as center subbundles. Assume that f is conjugate to g and the conjugacy preserves the strong stable
Externí odkaz:
http://arxiv.org/abs/2210.12664
Let $f$ be a non-invertible irreducible Anosov map on $d$-torus. We show that if the stable bundle of $f$ is one-dimensional, then $f$ has the integrable unstable bundle, if and only if, every periodic point of $f$ admits the same Lyapunov exponent o
Externí odkaz:
http://arxiv.org/abs/2205.13144
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Yu, Daohua, Gu, Ruihao
Publikováno v:
Proceedings of the American Mathematical Society; Mar2024, Vol. 152 Issue 3, p1019-1030, 12p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.