Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Grzegorz Mrukwa"'
Autor:
Grzegorz Mrukwa, Joanna Polanska
Publikováno v:
BMC Bioinformatics, Vol 23, Iss 1, Pp 1-24 (2022)
Abstract Background Investigating molecular heterogeneity provides insights into tumour origin and metabolomics. The increasing amount of data gathered makes manual analyses infeasible—therefore, automated unsupervised learning approaches are utili
Externí odkaz:
https://doaj.org/article/643b030c19624d7582effd8465c44530
Autor:
Grzegorz Mrukwa, Joanna Polanska
Publikováno v:
BMC bioinformatics. 23(1)
Investigating molecular heterogeneity provides insights about tumor origin and metabolomics. The increasing amount of data gathered makes manual analyses infeasible - therefore, automated unsupervised learning approaches are utilized for discovering
Autor:
Agata Kurczyk, Katarzyna Bednarczyk, Mykola Chekan, Joanna Polanska, Marta Gawin, Monika Pietrowska, Grzegorz Mrukwa, Piotr Widlak
Publikováno v:
Journal of Molecular Histology
Identification of biomarkers for molecular classification of cancer and for differentiation between cancerous and normal epithelium remains a vital issue in the field of head and neck cancer. Here we aimed to compare the ability of proteome and lipid
Autor:
Magdalena Kalinowska-Herok, Helmut E. Meyer, Corinna Henkel, Julian Elm, Anna Krawczyk, Joanna Polanska, Hanna C. Diehl, Marta Gawin, Monika Pietrowska, Grzegorz Mrukwa, Dariusz Lange, Mykola Chekan, Piotr Widlak, Grzegorz Drazek
Publikováno v:
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1865:837-845
Determination of the specific type of thyroid cancer is crucial for the prognosis and selection of treatment of this malignancy. However, in some cases appropriate classification is not possible based on histopathological features only, and it might
Autor:
M. Marcinkiewicz, Grzegorz Mrukwa
Publikováno v:
FedCSIS
Over the last few years, deep learning has proven to be a great solution to many problems, such as image or text classification. Recently, deep learning-based solutions have outperformed humans on selected benchmark datasets, yielding a promising fut
Autor:
Michael P. Hayball, Michal Kawulok, Marcin Cwiek, Pawel Wawrzyniak, Pawel Ulrych, Szymon Piechaczek, Wojciech Dudzik, Janusz Szymanek, M. Marcinkiewicz, Grzegorz Mrukwa, Pablo Ribalta Lorenzo, Barbara Bobek-Billewicz, Jakub Nalepa
Publikováno v:
ICIP
Data augmentation helps improve generalization of deep neural networks, and can be perceived as implicit regularization. It is pivotal in scenarios in which the amount of ground-truth data is limited, and acquiring new examples is costly and time-con
Publikováno v:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries ISBN: 9783030117252
BrainLes@MICCAI (2)
BrainLes@MICCAI (2)
Gliomas are the most common primary brain tumors, and their accurate manual delineation is a time- consuming and very user-dependent process. Therefore, developing automated techniques for reproducible detection and segmentation of brain tumors from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::10150580d043d732cb30a4f18a1b0db6
https://doi.org/10.1007/978-3-030-11726-9_2
https://doi.org/10.1007/978-3-030-11726-9_2
Autor:
Agata Wilk, Krzysztof Łakomiec, Katarzyna Frątczak, Marta Gawin, Mykola Chekan, Krzysztof Fujarewicz, Piotr Widlak, Grzegorz Mrukwa, Agata Kurczyk, Joanna Polanska, Monika Pietrowska
Publikováno v:
International Journal of Molecular Sciences
International Journal of Molecular Sciences, Vol 21, Iss 6289, p 6289 (2020)
International Journal of Molecular Sciences, Vol 21, Iss 6289, p 6289 (2020)
The primary diagnosis of thyroid tumors based on histopathological patterns can be ambiguous in some cases, so proper classification of thyroid diseases might be improved if molecular biomarkers support cytological and histological assessment. In thi
Autor:
Barbara Bobek-Billewicz, Izabela Burda, Jakub Nalepa, Maksym Walczak, Krzysztof Kotowski, Pablo Ribalta Lorenzo, Grzegorz Mrukwa, M. Marcinkiewicz, Michal Kawulok, Wojciech Dudzik, Michael P. Hayball, Pawel Wawrzyniak, Pawel Ulrych, Bartosz Machura
Publikováno v:
Artificial Intelligence in Medicine. 102:101769
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays an important role in diagnosis and grading of brain tumors. Although manual DCE biomarker extraction algorithms boost the diagnostic yield of DCE-MRI by providing quantitative infor
Autor:
Barbara Bobek-Billewicz, Jakub Nalepa, Pawel Wawrzyniak, Pawel Ulrych, Michal Kawulok, Grzegorz Mrukwa, Pablo Ribalta Lorenzo, Michael P. Hayball
Publikováno v:
Computer methods and programs in biomedicine. 176
Background and Objective Magnetic resonance imaging (MRI) is an indispensable tool in diagnosing brain-tumor patients. Automated tumor segmentation is being widely researched to accelerate the MRI analysis and allow clinicians to precisely plan treat