Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Grześkowiak, Maciej"'
Autor:
Grześkowiak, Maciej
Miyaji, Nakabayashi, and Takano proposed the algorithm for the construction of prime order pairing-friendly elliptic curves with embedding degrees $k=3,4,6$. We present a method for generating generalized MNT curves. The order of such pairing-friendl
Externí odkaz:
http://arxiv.org/abs/2409.20254
We improve the lower bound for $V(T)$, the number of sign changes of the error term $\psi(x)-x$ in the Prime Number Theorem in the interval $[1,T]$ for large $T$. We show that \[ \liminf_{T\to\infty}\frac{V(T)}{\log T}\geq\frac{\gamma_{0}}{\pi}+\frac
Externí odkaz:
http://arxiv.org/abs/2408.10399
Autor:
Grzeskowiak, Maciej
We give explicit numerical estimates for the generalized Chebyshev functions. Explicit results of this kind are useful for estimating of computational complexity of algorithms which generates special primes. Such primes are needed to construct an ell
Externí odkaz:
http://arxiv.org/abs/1709.09914
Autor:
Grześkowiak Maciej
Publikováno v:
Journal of Mathematical Cryptology, Vol 14, Iss 1, Pp 307-315 (2020)
We give an effective version with explicit constants of the large sieve inequality for imaginary quadratic fields. Explicit results of this kind are useful for estimating the computational complexity of algorithms which generate elements, whose norm
Externí odkaz:
https://doaj.org/article/4007a51c22e146f99af81987d36ee03b
Autor:
Grześkowiak, Maciej
Publikováno v:
Journal of International Migration & Integration; Jun2024, Vol. 25 Issue 2, p573-594, 22p
Autor:
Grześkowiak, Maciej
Publikováno v:
Studia Iuridica. (76):199-217
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=734801
Autor:
Grześkowiak, Maciej
Publikováno v:
Refugee Survey Quarterly; Mar2024, Vol. 43 Issue 1, p95-112, 18p
Autor:
Grześkowiak, Maciej
Publikováno v:
Refugee Survey Quarterly; Mar2023, Vol. 42 Issue 1, p81-102, 22p
Autor:
Grześkowiak, Maciej1 maciejg@amu.edu.pl
Publikováno v:
Fundamenta Informaticae. 2016, Vol. 149 Issue 4, p385-400. 16p.