Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Gruzberg, Ilya"'
In this paper we propose a new $S$-matrix approach to numerical simulations of network models and apply it to random networks that we proposed in a previous work 10.1103/PhysRevB.95.125414. Random networks are modifications of the Chalker-Coddington
Externí odkaz:
http://arxiv.org/abs/2407.04132
Publikováno v:
Phys. Rev. B 109, 174204 (2024)
We study a non-Anderson disorder driven quantum phase transition in a semi-infinite Dirac semimetal with a flat boundary. The conformally invariant boundary conditions, which include those that are time-reversal invariant, lead to nodal-like surface
Externí odkaz:
http://arxiv.org/abs/2312.10790
Publikováno v:
Phys. Rev. Lett. 131, 266401 (2023)
Multifractals arise in various systems across nature whose scaling behavior is characterized by a continuous spectrum of multifractal exponents $\Delta_q$. In the context of Anderson transitions, the multifractality of critical wave functions is desc
Externí odkaz:
http://arxiv.org/abs/2306.07340
We study generalized multifractality that characterizes eigenstate fluctuations and correlations in disordered systems of chiral symmetry classes AIII, BDI, and CII. By using the non-linear sigmamodel field theory, we construct pure-scaling composite
Externí odkaz:
http://arxiv.org/abs/2301.10851
Publikováno v:
PRB 107, L020201, Jan 2023
We perform a numerical investigation of Anderson metal-insulator transition (MIT) in a twodimensional system of chiral symmetry class AIII by combining finite-size scaling, transport, density of states, and multifractality studies. The results are in
Externí odkaz:
http://arxiv.org/abs/2210.03131
Publikováno v:
Phys. Rev. B 106, 104202 - Published 16 September 2022
We study generalized multifractality characterizing fluctuations and correlations of eigenstates in disordered systems of symmetry classes AII, D, and DIII. Both metallic phases and Andersonlocalization transitions are considered. By using the non-li
Externí odkaz:
http://arxiv.org/abs/2206.12226
Publikováno v:
Phys. Rev. B 105, 184205 - Published 19 May 2022
This work extends the analysis of the generalized multifractality of critical eigenstates at the spin quantum Hall transition in two-dimensional disordered superconductors [J. F. Karcher et al, Annals of Physics, 435, 168584 (2021)]. A mapping to cla
Externí odkaz:
http://arxiv.org/abs/2203.12617
Autor:
Padayasi, Jaychandran, Krishnan, Abijith, Metlitski, Max A., Gruzberg, Ilya A., Meineri, Marco
Publikováno v:
SciPost Phys. 12, 190 (2022)
This paper studies the critical behavior of the 3d classical $\mathrm{O}(N)$ model with a boundary. Recently, one of us established that upon treating $N$ as a continuous variable, there exists a critical value $N_c > 2$ such that for $2 \leq N < N_c
Externí odkaz:
http://arxiv.org/abs/2111.03071
Publikováno v:
Phys. Rev. B 104, 184201 (2021)
A generic two-dimensional disordered topological superconductor in symmetry class D exhibits rich phenomenology and multiple phases: diffusive thermal metal (DTM), Anderson insulator (AI), and thermal quantum Hall (TQH) phase (a topological supercond
Externí odkaz:
http://arxiv.org/abs/2108.12133
Generalized multifractality characterizes scaling of eigenstate observables at Anderson-localization critical points. We explore generalized multifractality in 2D systems, with the main focus on the spin quantum Hall (SQH) transition in superconducto
Externí odkaz:
http://arxiv.org/abs/2107.06414