Zobrazeno 1 - 10
of 53 220
pro vyhledávání: '"Gruenberg, A."'
If $G$ is a finite group, then the spectrum $\omega(G)$ is the set of all element orders of $G$. The prime spectrum $\pi(G)$ is the set of all primes belonging to $\omega(G)$. A simple graph $\Gamma(G)$ whose vertex set is $\pi(G)$ and in which two d
Externí odkaz:
http://arxiv.org/abs/2401.04789
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mannan, Wajid
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society Vol. 161 (2016), Issue 02, pp. 199-202
Gruenberg and Linnell showed that the standard relation module of a free product of $n$ groups of the form $C_r \times \mathbb{Z}$ could be generated by just $n+1$ generators, raising the possibility of a relation gap. We explicitly give such a set o
Externí odkaz:
http://arxiv.org/abs/2308.12930
A finite group $G$ is said to be rational if every character of $G$ is rational-valued. The Gruenberg-Kegel graph of a finite group $G$ is the undirected graph whose vertices are the primes dividing the order of $G$ and the edges join different prime
Externí odkaz:
http://arxiv.org/abs/2306.12883
The Gruenberg-Kegel graph $\Gamma(G)$ of a finite group $G$ is the graph whose vertex set is the set of prime divisors of $|G|$ and in which two distinct vertices $r$ and $s$ are adjacent if and only if there exists an element of order $rs$ in $G$. A
Externí odkaz:
http://arxiv.org/abs/2301.13762
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The Gruenberg-Kegel graph of a group is the undirected graph whose vertices are those primes which occur as the order of an element of the group, and distinct vertices $p$, $q$ are joined by an edge whenever the group has an element of order $pq$. It
Externí odkaz:
http://arxiv.org/abs/2112.08188
Autor:
Mullen, Caitlin
Publikováno v:
Banking Dive. 5/15/2024, pN.PAG-N.PAG. 1p.
The Gruenberg--Kegel graph (or the prime graph) $\Gamma(G)$ of a finite group $G$ is defined as follows. The vertex set of $\Gamma(G)$ is the set of all prime divisors of the order of $G$. Two distinct primes $r$ and $s$ regarded as vertices are adja
Externí odkaz:
http://arxiv.org/abs/2110.09175