Zobrazeno 1 - 10
of 12 073
pro vyhledávání: '"Grubisic A"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Grubišić-Čabo, Antonija, Guimarães, Marcos H. D., Afanasiev, Dmytro, Aguilar, Jose H. Garcia, Aguilera, Irene, Ali, Mazhar N., Bhattacharyya, Semonti, Blanter, Yaroslav M., Bosma, Rixt, Cheng, Zhiyuan, Dan, Zhiying, Dash, Saroj P., Dueñas, Joaquín Medina, Fernandez-Rossier, Joaquín, Gibertini, Marco, Grytsiuk, Sergii, Houmes, Maurits J. A., Isaeva, Anna, Knekna, Chrystalla, Kole, Arnold H., Kurdi, Samer, Lado, Jose, Mañas-Valero, Samuel, Lopes, J. Marcelo J., Marian, Damiano, Na, Mengxing, Pabst, Falk, Pierantoni, Sergio Barquero, Regout, Mexx, Reho, Riccardo, Rösner, Malte, Sanz, David, van der Sar, Toeno, Sławińska, Jagoda, Verstraete, Matthieu J., Waseem, Muhammad, van der Zant, Herre S. J., Zanolli, Zeila, Soriano, David
Fundamental research on two-dimensional (2D) magnetic systems based on van der Waals materials has been gaining traction rapidly since their recent discovery. With the increase of recent knowledge, it has become clear that such materials have also a
Externí odkaz:
http://arxiv.org/abs/2412.18020
Bilayer graphene twisted at the angle of about 1.1{\deg} better known as magic angle, exhibits ultra-flat moir\'e superlattice bands that are a source of highly-tunable, exotic quantum phenomena. Such phenomena, like superconductivity, correlated Mot
Externí odkaz:
http://arxiv.org/abs/2411.00854
Backdoor attacks change a small portion of training data by introducing hand-crafted triggers and rewiring the corresponding labels towards a desired target class. Training on such data injects a backdoor which causes malicious inference in selected
Externí odkaz:
http://arxiv.org/abs/2409.01185
Autor:
Guo, Qinda, Xu, Ke-Jun, Berntsen, Magnus H., Grubišić-Čabo, Antonija, Dendzik, Maciej, Balasubramanian, Thiagarajan, Polley, Craig, Chen, Su-Di, He, Junfeng, He, Yu, Rotundu, Costel R., Lee, Young S., Hashimoto, Makoto, Lu, Dong-Hui, Devereaux, Thomas P., Lee, Dung-Hai, Shen, Zhi-Xun, Tjernberg, Oscar
Spin- and charge-lattice interactions are potential key factors in the microscopic mechanism of high-temperature superconductivity in cuprates. Although both interactions can dramatically shape the low-energy electronic structure, their phenomenologi
Externí odkaz:
http://arxiv.org/abs/2408.01685
Autor:
Cummins, Chris, Seeker, Volker, Grubisic, Dejan, Roziere, Baptiste, Gehring, Jonas, Synnaeve, Gabriel, Leather, Hugh
Large Language Models (LLMs) have demonstrated remarkable capabilities across a variety of software engineering and coding tasks. However, their application in the domain of code and compiler optimization remains underexplored. Training LLMs is resou
Externí odkaz:
http://arxiv.org/abs/2407.02524
Various iterative eigenvalue solvers have been developed to compute parts of the spectrum for a large sparse matrix, including the power method, Krylov subspace methods, contour integral methods, and preconditioned solvers such as the so called LOBPC
Externí odkaz:
http://arxiv.org/abs/2405.11962
We introduce a novel paradigm in compiler optimization powered by Large Language Models with compiler feedback to optimize the code size of LLVM assembly. The model takes unoptimized LLVM IR as input and produces optimized IR, the best optimization p
Externí odkaz:
http://arxiv.org/abs/2403.14714
Large language models show great potential in generating and optimizing code. Widely used sampling methods such as Nucleus Sampling increase the diversity of generation but often produce repeated samples for low temperatures and incoherent samples fo
Externí odkaz:
http://arxiv.org/abs/2402.18734