Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Grothendieck–Riemann–Roch theorem"'
Autor:
Emmerson, Parker
Herein, I disproveGrothendieck–Riemann–Roch theorem. The theorem, while appealing in concept, is patently false upon a closer examination at the origin of numbers and the entanglement of the pre-numeric quasi-quanta.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00bef1e0f8205a1d1c870e4530a5b5ae
Publikováno v:
Hoyois, M, Safronov, P, Scherotzke, S & Sibilla, N 2021, ' The categorified Grothendieck-Riemann-Roch theorem ', Compositio Mathematica, vol. 157, no. 1, pp. 154-214 . https://doi.org/10.1112/S0010437X20007642
Compositio Mathematica
Compositio Mathematica
In this paper we prove a categorification of the Grothendieck-Riemann-Roch theorem. Our result implies in particular a Grothendieck-Riemann-Roch theorem for To\"en and Vezzosi's secondary Chern character. As a main application, we establish a compari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57c32f66081c7120f218282fd89bf72b
http://hdl.handle.net/20.500.11767/128270
http://hdl.handle.net/20.500.11767/128270
Publikováno v:
Advances in Mathematics. 294:307-331
We extend the Boutet de Monvel Toeplitz index theorem to complex manifolds with isolated singularities following the relative K -homology theory of Baum, Douglas, and Taylor for manifolds with boundary. We apply this index theorem to study the Arveso
Autor:
Andrei Teleman
Publikováno v:
Geometry, Analysis and Probability: In Honor of Jean-Michel Bismut
Geometry, Analysis and Probability: In Honor of Jean-Michel Bismut, pp.217-243, 2017, Progress in Mathematics, ⟨10.1007/978-3-319-49638-2_10⟩
Progress in Mathematics ISBN: 9783319496368
Geometry, Analysis and Probability: In Honor of Jean-Michel Bismut, pp.217-243, 2017, Progress in Mathematics, ⟨10.1007/978-3-319-49638-2_10⟩
Progress in Mathematics ISBN: 9783319496368
Proceedings of the Conference in honor of J. M. Bismut, Progress in Mathematics, Birkhäuser; International audience; This article deals with two topics: the first, which has a general character, is a variation formula for the the determinant line bu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7d473d2bfeac03613a03a8af8eb82ef3
https://hal.archives-ouvertes.fr/hal-01289004
https://hal.archives-ouvertes.fr/hal-01289004
Autor:
Man Ho Ho
Publikováno v:
Proceedings of the American Mathematical Society. 142:1973-1982
We give a direct proof that the Freed–Lott differential analytic index is well defined and a condensed proof of the differential Grothendieck–Riemann–Roch theorem. As a byproduct we also obtain a direct proof that the R / Z \mathbb {R}/\mathbb
Publikováno v:
Journal of the European Mathematical Society. 16:463-535
In this paper we extend the holomorphic analytic torsion classes of Bismut and Kohler to arbitrary projective morphisms between smooth algebraic complex varieties. To this end, we propose an axiomatic definition and give a classification of the theor
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Olivier Haution
Publikováno v:
Advances in Mathematics. 231:855-878
We prove an integrality property of the Chern character with values in Chow groups. As a consequence we obtain, for a prime number p, a construction of the p-1 first homological Steenrod operations on Chow groups modulo p and p-primary torsion, over
Autor:
Julien Grivaux
Publikováno v:
Mathematical Research Letters
Mathematical Research Letters, 2013, 20 (6), pp.1091--1101. ⟨10.4310/MRL.2013.v20.n6.a8⟩
Mathematical Research Letters, 2013, 20 (6), pp.1091--1101. ⟨10.4310/MRL.2013.v20.n6.a8⟩
In this paper, we prove that the Grothendieck-Riemann-Roch formula in Deligne cohomology computing the determinant of the cohomology of a holomorphic vector bundle on the fibers of a proper submersion between abstract complex manifolds is invariant b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bcfba300887a5bbc291ec996446ea627
https://hal.archives-ouvertes.fr/hal-01301417/file/Riemann-Roch-Deligne.pdf
https://hal.archives-ouvertes.fr/hal-01301417/file/Riemann-Roch-Deligne.pdf