Zobrazeno 1 - 10
of 635
pro vyhledávání: '"Grothendieck–Riemann–Roch theorem"'
Autor:
Toën, Bertrand, Vezzosi, Gabriele
This is the second of series of papers on the study of foliations in the setting of derived algebraic geometry based on the central notion of derived foliation. We introduce sheaf-like coefficients for derived foliations, called quasi-coherent crysta
Externí odkaz:
http://arxiv.org/abs/2007.09251
Autor:
Kondyrev, Grigory, Prikhodko, Artem
We use the formalism of traces in higher categories to prove a common generalization of the holomorphic Atiyah-Bott fixed point formula and the Grothendieck-Riemann-Roch theorem. The proof is quite different from the original one proposed by Grothend
Externí odkaz:
http://arxiv.org/abs/1906.00172
In this paper we prove a categorification of the Grothendieck-Riemann-Roch theorem. Our result implies in particular a Grothendieck-Riemann-Roch theorem for To\"en and Vezzosi's secondary Chern character. As a main application, we establish a compari
Externí odkaz:
http://arxiv.org/abs/1804.00879
Autor:
HO, MAN-HO
Publikováno v:
Proceedings of the American Mathematical Society, 2014 Jun 01. 142(6), 1973-1982.
Externí odkaz:
https://www.jstor.org/stable/23809609
Autor:
Emmerson, Parker
Herein, I disproveGrothendieck–Riemann–Roch theorem. The theorem, while appealing in concept, is patently false upon a closer examination at the origin of numbers and the entanglement of the pre-numeric quasi-quanta.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00bef1e0f8205a1d1c870e4530a5b5ae
We extend the Boutet de Monvel Toeplitz index theorem to complex manifold with isolated singularities following the relative $K$-homology theory of Baum, Douglas, and Taylor for manifold with boundary. We apply this index theorem to study the Arveson
Externí odkaz:
http://arxiv.org/abs/1404.4396
The classical arithmetic Grothendieck-Riemann-Roch theorem can be applied only to projective morphisms that are smooth over the complex numbers. In this paper we generalize the arithmetic Grothendieck-Riemann-Roch theorem to the case of general proje
Externí odkaz:
http://arxiv.org/abs/1211.1783
Autor:
Ho, Man-Ho
Publikováno v:
Proceedings of the American Mathematical Society, Volume 142, Number 6 (2014), page 1973-1982
We give a direct proof that the Freed-Lott differential analytic index is well defined and a condensed proof of the differential Grothendieck-Riemann-Roch theorem. As a byproduct we also obtain a direct proof that the R/Z analytic index is well defin
Externí odkaz:
http://arxiv.org/abs/1111.5546
Autor:
Gil, J. I. Burgos, Litcanu, R.
Publikováno v:
Documenta Math. 15 (2010) 73--176
We study the singular Bott-Chern classes introduced by Bismut, Gillet and Soule. Singular Bott-Chern classes are the main ingredient to define direct images for closed immersions in arithmetic K-theory. In this paper we give an axiomatic definition o
Externí odkaz:
http://arxiv.org/abs/0902.0430
Autor:
Ho, Man-Ho
Publikováno v:
Journal of Geometry and Physics, 107 (2016), 162-174
In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit comp
Externí odkaz:
http://arxiv.org/abs/1203.3250