Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Groisman, Jorge"'
In this paper we apply techniques from nonstandard analysis to study expansive dynamical systems. Among other results, we provide a necessary and sufficient condition for an expansive homeomorphism on a compact metric space to admit doubly-asymptotic
Externí odkaz:
http://arxiv.org/abs/2412.10201
We study the dynamics of Topologically Anosov homeomorphisms of non compact surfaces. In the case of surfaces of genus zero and finite type, we classify them. We prove that if $f:S \to S$, is a Topologically Anosov homeomorphism where $S$ is a non-co
Externí odkaz:
http://arxiv.org/abs/1909.12121
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Groisman, Jorge, Nitecki, and Zbigniew
A diffeomorphism $f:\mathbb{R}^2\to\mathbb{R}^2$ in the plane is Anosov if it has a hyperbolic splitting at every point of the plane. The two known topological conjugacy classes of such diffeomorphisms are linear hyperbolic automorphisms and translat
Externí odkaz:
http://arxiv.org/abs/1812.04689
This paper deals with classifying the dynamics of {\it Topologically Anosov} plane homeomorphisms. We prove that a Topologically Anosov homeomorphism $f:\mathbb{R}^2 \to \mathbb{R}^2$ is conjugate to a homothety if it is the time one map of a flow. W
Externí odkaz:
http://arxiv.org/abs/1805.02737
Transitivity, the existence of periodic points and positive topological entropy can be used to characterize complexity in dynamical systems. It is known that for graphs that are not trees, for every $\varepsilon>0,$ there exist (complicate) totally t
Externí odkaz:
http://arxiv.org/abs/1712.00104
Autor:
Groisman, Jorge, Nitecki, Zbigniew
Publikováno v:
Ergod. Th. Dynam. Sys. 35 (2014) 1229-1242
In a non-compact setting, the notion of hyperbolicity, and the associated structure of stable and unstable manifolds (for unbounded orbits), is highly dependent on the choice of metric used to define it. We consider the simplest version of this, the
Externí odkaz:
http://arxiv.org/abs/1306.2670
Autor:
Groisman, Jorge
Publikováno v:
Discrete and Continuous Dynamical Systems, 29(2011), no 1, 213--239
This article tackles the problem of the classification of expansive homeomorphisms of the plane. Necessary and sufficient conditions for a homeomorphism to be conjugate to a linear hyperbolic automorphism will be presented. The techniques involve top
Externí odkaz:
http://arxiv.org/abs/0906.4596
Autor:
Groisman, Jorge
The aim of this work is to describe the set of fixed point free homeomorphisms of the plane under certain expansive conditions.
Comment: 13 pages, 6 figures
Comment: 13 pages, 6 figures
Externí odkaz:
http://arxiv.org/abs/0906.4581
Autor:
Groisman, Jorge, Vieitez, José
Publikováno v:
In Topology and its Applications 1 December 2014 178:125-135