Zobrazeno 1 - 10
of 258
pro vyhledávání: '"Groenevelt, P."'
Autor:
Groenevelt, Wolter, Wagenaar, Carel
Publikováno v:
J. Phys. A: Math. Theor. (2024) 57 375202
In this paper, a generalized version of dynamic ASEP is introduced, and it is shown that the process has a Markov duality property with the same process on the reversed lattice. The duality functions are multivariate $q$-Racah polynomials, and the co
Externí odkaz:
http://arxiv.org/abs/2306.12318
Autor:
Groenevelt, Wolter, Wagenaar, Carel
Publikováno v:
SIGMA 19 (2023), 008, 35 pages
An algebra is introduced which can be considered as a rank 2 extension of the Askey-Wilson algebra. Relations in this algebra are motivated by relations between coproducts of twisted primitive elements in the two-fold tensor product of the quantum al
Externí odkaz:
http://arxiv.org/abs/2206.03986
Autor:
Groenevelt, Wolter, Koelink, Erik
We study a Lax pair in a $2$-parameter Lie algebra in various representations. The overlap coefficients of the eigenfunctions of $L$ and the standard basis are given in terms of orthogonal polynomials and orthogonal functions. Moreover, eigenfunction
Externí odkaz:
http://arxiv.org/abs/2010.06486
We study a class of interacting particle systems with asymmetric interaction showing a self-duality property. The class includes the ASEP($q,\theta$), asymmetric exclusion process, with a repulsive interaction, allowing up to $\theta\in \mathbb{N}$ p
Externí odkaz:
http://arxiv.org/abs/2003.07837
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
SIGMA 15 (2019), 053, 27 pages
We study self-duality for interacting particle systems, where the particles move as continuous time random walkers having either exclusion interaction or inclusion interaction. We show that orthogonal self-dualities arise from unitary symmetries of t
Externí odkaz:
http://arxiv.org/abs/1812.08553
Autor:
Groenevelt, Wolter
Publikováno v:
In: Buskes G. et al. (eds) Positivity and Noncommutative Analysis. Trends in Mathematics. 2019
We study the $q$-hypergeometric difference operator $L$ on a particular Hilbert space. In this setting $L$ can be considered as an extension of the Jacobi operator for $q^{-1}$-Al-Salam--Chihara polynomials. Spectral analysis leads to unitarity and a
Externí odkaz:
http://arxiv.org/abs/1812.01282
Autor:
Groenevelt, Wolter
Publikováno v:
Int. Math. Res. Not. 2021, no. 5, 3224-3266
We study matrix elements of a change of base between two different bases of representations of the quantum algebra $U_q(su(1,1))$. The two bases, which are multivariate versions of Al-Salam--Chihara polynomials, are eigenfunctions of iterated coprodu
Externí odkaz:
http://arxiv.org/abs/1809.04327
We present a theorem which elucidates the connection between self-duality of Markov processes and representation theory of Lie algebras. In particular, we identify sufficient conditions such that the intertwining function between two representations
Externí odkaz:
http://arxiv.org/abs/1801.09433
Autor:
Groenevelt, Wolter
Publikováno v:
J. Stat. Phys. 174 (2019), no. 1, 97-119
We obtain stochastic duality functions for specific Markov processes using representation theory of Lie algebras. The duality functions come from the kernel of a unitary intertwiner between $*$-representations, which provides (generalized) orthogonal
Externí odkaz:
http://arxiv.org/abs/1709.05997