Zobrazeno 1 - 10
of 90 159
pro vyhledávání: '"Grinberg A"'
Autor:
STAVANS, ILAN
Publikováno v:
American Scholar. Autumn2023, Vol. 92 Issue 4, p20-31. 12p.
Publikováno v:
Systematic & Applied Acarology. Jan2023, Vol. 28 Issue 1, p20-28. 9p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Graden, Dale T.1 (AUTHOR)
Publikováno v:
Journal of Interdisciplinary History. Spring2023, Vol. 53 Issue 4, p666-668. 3p.
Autor:
Суковатая, Виктория
Publikováno v:
Ab Imperio; September 2024, Vol. 2024 Issue: 2 p235-243, 9p
Autor:
Jiang, Heping
Finding a Hamilton graph from simple connected graphs is an important problem in discrete mathematics and computer science. Grinberg Theorem is a well-known necessary condition for planar Hamilton graphs. It divides a plane into two parts: inside and
Externí odkaz:
http://arxiv.org/abs/1807.10187
Autor:
Drinfeld, Vladimir
We first prove the Grinberg-Kazhdan formal arc theorem without any assumptions on the characteristic. This part of the article is equivalent to arXiv:math-AG/0203263. Then we try to clarify the geometric ideas behind the proof by introducing the noti
Externí odkaz:
http://arxiv.org/abs/1801.01046
Autor:
Avalos Soto, Adriana
Publikováno v:
Algarabía Mensual; oct2024, Issue 226, p34-37, 4p, 3 Black and White Photographs
Publikováno v:
Journal of Applied Computer Science & Mathematics, Vol 13, Iss 1, Pp 19-24 (2019)
In this paper, Grinberg equation related to the Hamiltonicity of cubic planar graphs is revisited using the cycle base description of the graph and the related Laplacian. The advantages and the limitations of a pure Algebraic approach to Hamiltonicit
Externí odkaz:
https://doaj.org/article/80ef581a577f407389d378b5aab7089f
Autor:
Jiang, Heping
Let G (V, E) be a simple graph with vertex set V and edge set E. A generalized cycle is a subgraph such that any vertex degree is even. A simple cycle (briefly in a cycle) is a connected subgraph such that every vertex has degree 2. A basis of the cy
Externí odkaz:
http://arxiv.org/abs/1611.03273