Zobrazeno 1 - 10
of 905
pro vyhledávání: '"Grimshaw R"'
Interaction of a solitary wave with a long background wave is studied within the framework of rotation modified Benjamin-Ono equation describing internal waves in a deep fluid. With the help of asymptotic method, we find stationary and nonstationary
Externí odkaz:
http://arxiv.org/abs/1911.02751
Publikováno v:
IMA Journal of Applied Mathematics, 82(4) (2017) 802-820
In this paper we are consider radiating solitary wave solutions of coupled regularised Boussinesq equations. This type of solution consists of a leading solitary wave with a small-amplitude co-propagating oscillatory tail, and emerges from a pure sol
Externí odkaz:
http://arxiv.org/abs/1802.02473
Publikováno v:
Physica D, 2018, v. 366 43-50
The decay of Kadomtsev - Petviashvili lumps is considered for a few typical dissipations - Rayleigh dissipation, Reynolds dissipation, Landau damping, Chezy bottom friction, viscous dissipation in the laminar boundary layer, and radiative losses caus
Externí odkaz:
http://arxiv.org/abs/1801.09175
In the context of fluid flows, the coupled Ostrovsky equations arise when two distinct linear long wave modes have nearly coincident phase speeds in the presence of background rotation. In this paper, nonlinear waves in a stratified fluid in the pres
Externí odkaz:
http://arxiv.org/abs/1407.0939
Autor:
Kamchatnov, A. M., Kuo, Y. -H., Lin, T. -C., Horng, T. -L., Gou, S. -C., Clift, R., El, G. A., Grimshaw, R. H. J.
Publikováno v:
J. Fluid Mech. 736, 495?531 (2013)
Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlin
Externí odkaz:
http://arxiv.org/abs/1305.3316
Autor:
Kamchatnov, A. M., Kuo, Y. -H., Lin, T. -C., Horng, T. -L., Gou, S. -C., Clift, R., El, G. A., Grimshaw, R. H. J.
Publikováno v:
Phys. Rev. E 86, 036605 (2012)
We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg--de Vries, equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when
Externí odkaz:
http://arxiv.org/abs/1205.2749
Publikováno v:
PHYSICA D 237 (2008) 2423 - 2435
We derive an asymptotic formula for the amplitude distribution in a fully nonlinear shallow-water solitary wave train which is formed as the long-time outcome of the initial-value problem for the Su-Gardner (or one-dimensional Green-Naghdi) system. O
Externí odkaz:
http://arxiv.org/abs/0710.3379
Publikováno v:
J. Fluid Mech. 585, 213-244 (2007)
This paper considers the propagation of shallow-water solitary and nonlinear periodic waves over a gradual slope with bottom friction in the framework of a variable-coefficient Korteweg-de Vries equation. We use the Whitham averaging method, using a
Externí odkaz:
http://arxiv.org/abs/0704.0045
Publikováno v:
Phys Fluids, 18 (2006) Art No 027104
We consider unsteady undular bores for a pair of coupled equations of Boussinesq-type which contain the familiar fully nonlinear dissipationless shallow-water dynamics and the leading-order fully nonlinear dispersive terms. This system contains one h
Externí odkaz:
http://arxiv.org/abs/nlin/0507029