Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Grimaldi, Antonio Giuseppe"'
We establish the higher fractional differentiability for the minimizers of non-autonomous integral functionals of the form \begin{equation} \mathcal{F}(u,\Omega):=\int_\Omega \left[ f(x,Du)- g \cdot u \right] dx , \notag \end{equation} under $(p,q)$-
Externí odkaz:
http://arxiv.org/abs/2409.08796
We prove some regularity results for a priori bounded local minimizers of non-autonomous integral functionals of the form $$\mathcal{F}(v,\Omega)=\int_\Omega F(x,Dv)dx,$$ under the constraint $v \ge \psi$ a.e. in $\Omega$, where $\psi$ is a fixed obs
Externí odkaz:
http://arxiv.org/abs/2408.09510
We prove the local Lipschitz regularity of the local minimizers of scalar integral functionals of the form \begin{equation*} \mathcal{F}(v;\Omega)= \int_{\Omega} f (x, Dv) dx \end{equation*} under $(p,q)$-growth conditions. The main novelty is that,
Externí odkaz:
http://arxiv.org/abs/2406.19174
We study the regularity properties of H\"older continuous minimizers to non-autonomous functionals satisfying $(p,q)$-growth conditions, under Besov assumptions on the coefficients. In particular, we are able to prove higher integrability and higher
Externí odkaz:
http://arxiv.org/abs/2404.12053
We consider local weak solutions of widely degenerate or singular elliptic PDEs of the type \begin{equation*} -\,\mathrm{div}\left((\vert Du\vert-\lambda)_{+}^{p-1}\frac{Du}{\vert Du\vert}\right)=f \,\,\,\,\,\,\, \text{in}\,\,\Omega, \end{equation*}
Externí odkaz:
http://arxiv.org/abs/2401.13116
Autor:
Grimaldi, Antonio Giuseppe
In this paper, we consider minimizers of integral functionals of the type \begin{equation*} \mathcal{F}(u):= \int_\Omega \dfrac{1}{p} \bigl( |Du(x)|_{\gamma(x)}-1\bigr)_+^p \ \mathrm{d}x, \end{equation*} for $p >1$, where $u : \Omega \subset \mathbb{
Externí odkaz:
http://arxiv.org/abs/2312.17665
Autor:
Grimaldi, Antonio Giuseppe
We establish the higher fractional differentiability of bounded minimizers to a class of obstacle problems with non-standard growth conditions of the form \begin{gather*} \min \biggl\{ \displaystyle\int_{\Omega} F(x,Dw)dx \ : \ w \in \mathcal{K}_{\ps
Externí odkaz:
http://arxiv.org/abs/2206.01427
We prove the local boundedness for solutions to a class of obstacle problems with non-standard growth conditions. The novelty here is that we are able to establish the local boundedness under a sharp bound on the gap between the growth exponents.
Externí odkaz:
http://arxiv.org/abs/2202.13102
We study the higher fractional differentiability properties of the gradient of the solutions to variational obstacle problems of the form \begin{gather*} \min \biggl\{ \int_{\Omega} F(x,w,Dw) d x \ : \ w \in \mathcal{K}_{\psi}(\Omega) \biggr\}, \end{
Externí odkaz:
http://arxiv.org/abs/2201.09771
We here establish the higher fractional differentiability for solutions to a class of obstacle problems with non-standard growth conditions. We deal with the case in which the solutions to the obstacle problems satisfy a variational inequality of the
Externí odkaz:
http://arxiv.org/abs/2109.01584