Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Grienenberger, Émilie"'
Publikováno v:
Logical Methods in Computer Science, Volume 19, Issue 1 (February 14, 2023) lmcs:8637
The lambda-Pi-calculus modulo theory is a logical framework in which many type systems can be expressed as theories. We present such a theory, the theory U, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory
Externí odkaz:
http://arxiv.org/abs/2111.00543
Autor:
Grienenberger, Emilie, Ritzert, Martin
We study the problem of learning properties of nodes in tree structures. Those properties are specified by logical formulas, such as formulas from first-order or monadic second-order logic. We think of the tree as a database encoding a large dataset
Externí odkaz:
http://arxiv.org/abs/1909.10994
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
FSCD 2021-6th International Conference on Formal Structures for Computation and Deduction
FSCD 2021-6th International Conference on Formal Structures for Computation and Deduction, Jul 2021, Buenos Aires / Virtual, Argentina. ⟨10.4230/LIPIcs.FSCD.2021.20⟩
FSCD 2021-6th International Conference on Formal Structures for Computation and Deduction, Jul 2021, Buenos Aires / Virtual, Argentina. ⟨10.4230/LIPIcs.FSCD.2021.20⟩
The λΠ-calculus modulo theory is a logical framework in which many logical systems can be expressed as theories. We present such a theory, the theory {U}, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4af361cf065543a6127b65cd8c3995c4
https://hal.inria.fr/hal-03279749
https://hal.inria.fr/hal-03279749