Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Gregor Herbort"'
Autor:
Gregor Herbort
Publikováno v:
Annales Polonici Mathematici. 109:209-260
A sufficient condition for the infinite dimensionality of the Bergman space of a pseudoconvex domain is given. This condition holds on any pseudoconvex domain that has at least one smooth boundary point of finite type in the sense of D'Angelo.
C
C
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38179d024bb28a83dd951623ce9540d4
Autor:
Gregor Herbort
Publikováno v:
Annales Polonici Mathematici. 94:149-185
Autor:
Gregor Herbort
Publikováno v:
Annales Polonici Mathematici. 92:29-39
Autor:
Gregor Herbort
Publikováno v:
Mathematische Zeitschrift. 251:673-703
We study the class of smooth bounded weakly pseudoconvex domains Open image in new window that are of finite type (in the sense of J. Kohn) and prove effective estimates on the invariant distances of Bergman and Kobayashi and also for the inner dista
Autor:
Gregor Herbort
Publikováno v:
International Journal of Mathematics. 11:509-522
In this article we deal with the behavior of the pluricomplex Green function GD(·;w), of a pseudoconvex domain D in [Formula: see text], when the pole tends to a boundary point. In [7], it was shown that, given a boundary point w0 of a hyperconvex d
Autor:
Klas Diederich, Gregor Herbort
Publikováno v:
Annales de l’institut Fourier. 50:1205-1228
Soit D ⊂ C un domaine pseudoconvexe qui admet une fonction plurisousharmonique d'exhaustion et Holder continue. On note G D (.,.) la fonction pluricomplexe de Green, pour D. Dans cet article nous allons donner pour un ensemble compact K ⊂ D une b
Autor:
Klas Diederich, Gregor Herbort
Publikováno v:
International Journal of Mathematics. 10:825-832
Let $\Omega\subset {\mathbb C}^n$ be a Ck-smoothly (with k≥1) bounded pseudoconvex domain and $K_\Omega: \Omega\times \Omega\to {\mathbb C}$ denote its Bergman kernel function. In this article the question is investigated, whether the function $|K_
Autor:
Gregor Herbort
Publikováno v:
Mathematische Zeitschrift. 232:183-196
In this article it is shown that the Bergman metric on a bounded hyperconvex domain in $\mathbb{C}^n$ is always complete. A counterexample demonstrates, that the converse conclusion fails in general.
Autor:
Gregor Herbort, Klas Diederich
Publikováno v:
Journal of Geometric Analysis. 3:237-267
We consider for smooth pseudoconvex bounded domains Ω ⊂ ℂn of finite type as local analytic invariants on the boundary the growth orders of the Bergman kernel and the Bergman metric and the best possible order of subellipticity e1 > 0 for the\(\