Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Greg Oman"'
Autor:
Greg Oman
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2014 (2014)
Let R be a commutative ring with identity and let M be an infinite unitary R-module. (Unless indicated otherwise, all rings are commutative with identity 1≠0 and all modules are unitary.) Then M is called a Jónsson module provided every proper sub
Externí odkaz:
https://doaj.org/article/46b4c64d5e6a4722807da2bd0f1c6244
Autor:
Greg Oman, Charles N. Curtis
Publikováno v:
The College Mathematics Journal. 54:147-160
Autor:
Greg Oman, Nicholas J. Werner
Publikováno v:
Communications in Algebra. 51:2748-2758
Autor:
Greg Oman
Publikováno v:
Glasgow Mathematical Journal. :1-4
An associative ring R is called potent provided that for every $x\in R$ , there is an integer $n(x)>1$ such that $x^{n(x)}=x$ . A celebrated result of N. Jacobson is that every potent ring is commutative. In this note, we show that a ring R is potent
Autor:
Greg Oman, Charles N. Curtis
Publikováno v:
The College Mathematics Journal. 53:319-325
Autor:
Greg Oman
Publikováno v:
Mediterranean Journal of Mathematics. 20
Autor:
Greg Oman, Charles N. Curtis
Publikováno v:
The College Mathematics Journal. 52:306-315
Autor:
Greg Oman, Charles N. Curtis
Publikováno v:
The College Mathematics Journal. 51:386-392
Autor:
Greg Oman
Publikováno v:
Archiv der Mathematik. 115:159-168
Let D be a commutative domain with identity, and let $${\mathcal {L}}(D)$$ be the lattice of nonzero ideals of D. Say that D is ideal upper finite provided $${\mathcal {L}}(D)$$ is upper finite, that is, every nonzero ideal of D is contained in but f
Autor:
Greg Oman
Publikováno v:
Communications in Algebra. 48:2041-2050
Let R be a commutative unital ring, and let Spec(R):=P(R) be the collection of prime ideals of R. Further, let NP(R) denote the collection of proper nonprime ideals of R and set NP(R)1:=NP(R)∪{R}. ...