Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Grassal, A."'
Autor:
Sevastopolsky, Artem, Grassal, Philip-William, Giebenhain, Simon, Athar, ShahRukh, Verdoliva, Luisa, Niessner, Matthias
Current advances in human head modeling allow to generate plausible-looking 3D head models via neural representations. Nevertheless, constructing complete high-fidelity head models with explicitly controlled animation remains an issue. Furthermore, c
Externí odkaz:
http://arxiv.org/abs/2312.14140
Autor:
Grassal, Philip-William, Prinzler, Malte, Leistner, Titus, Rother, Carsten, Nießner, Matthias, Thies, Justus
We present Neural Head Avatars, a novel neural representation that explicitly models the surface geometry and appearance of an animatable human avatar that can be used for teleconferencing in AR/VR or other applications in the movie or games industry
Externí odkaz:
http://arxiv.org/abs/2112.01554
Differential privacy allows bounding the influence that training data records have on a machine learning model. To use differential privacy in machine learning, data scientists must choose privacy parameters $(\epsilon,\delta)$. Choosing meaningful p
Externí odkaz:
http://arxiv.org/abs/2103.02913
Attacks that aim to identify the training data of public neural networks represent a severe threat to the privacy of individuals participating in the training data set. A possible protection is offered by anonymization of the training data or trainin
Externí odkaz:
http://arxiv.org/abs/1912.11328
There has been a large number of contributions on privacy-preserving smart metering with Differential Privacy, addressing questions from actual enforcement at the smart meter to billing at the energy provider. However, exploitation is mostly limited
Externí odkaz:
http://arxiv.org/abs/1807.02361
Publikováno v:
Energy Informatics, Vol 1, Iss S1, Pp 93-113 (2018)
Abstract There has been a large number of contributions on privacy-preserving smart metering with Differential Privacy, addressing questions from actual enforcement at the smart meter to billing at the energy provider. However, exploitation is mostly
Externí odkaz:
https://doaj.org/article/a6e528b132664232858c6086e210c78f
Autor:
Grassal, Philip-William, Prinzler, Malte, Leistner, Titus, Rother, Carsten, Nießner, Matthias, Thies, Justus
Publikováno v:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
We present Neural Head Avatars, a novel neural representation that explicitly models the surface geometry and appearance of an animatable human avatar that can be used for teleconferencing in AR/VR or other applications in the movie or games industry
Publikováno v:
Le Pharmacien Clinicien. 57:e154
Publikováno v:
Data and Applications Security and Privacy XXXV ISBN: 9783030812416
DBSec
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Data and Applications Security and Privacy XXXV
35th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy (DBSec 2021)
DBSec
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Data and Applications Security and Privacy XXXV
35th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy (DBSec 2021)
Attacks that aim to identify the training data of neural networks represent a severe threat to the privacy of individuals in the training dataset. A possible protection is offered by anonymization of the training data or training function with differ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::475db1987ed599352826a35ff75e7a48
https://doi.org/10.1007/978-3-030-81242-3_2
https://doi.org/10.1007/978-3-030-81242-3_2
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.