Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Graphical causal models"'
Autor:
Ruben Sanchez-Romero, Joseph D. Ramsey, Kun Zhang, Madelyn R. K. Glymour, Biwei Huang, Clark Glymour
Publikováno v:
Network Neuroscience, Vol 3, Iss 2, Pp 274-306 (2019)
We test the adequacies of several proposed and two new statistical methods for recovering the causal structure of systems with feedback from synthetic BOLD time series. We compare an adaptation of the first correct method for recovering cyclic linear
Externí odkaz:
https://doaj.org/article/5f701e87d17b49db9e340fbd020c66f4
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Genetics, Vol 10 (2019)
A fundamental task in various disciplines of science, including biology, is to find underlying causal relations and make use of them. Causal relations can be seen if interventions are properly applied; however, in many cases they are difficult or eve
Externí odkaz:
https://doaj.org/article/7146c4b4881c4ac9a2360c1bf438eb1d
Publikováno v:
ISPRS International Journal of Geo-Information, Vol 10, Iss 3, p 190 (2021)
Current spatiotemporal data has facilitated movement studies to shift objectives from descriptive models to explanations of the underlying causes of movement. From both a practical and theoretical standpoint, progress in developing approaches for the
Externí odkaz:
https://doaj.org/article/8a4e76a5d79e4b26878f526e15066c9b
Autor:
Twardy, Charles1
Publikováno v:
Philosophy of Science. Jul2005, Vol. 72 Issue 3, p494-498. 5p.
Publikováno v:
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Lesot, M.-J. (ed.), Information Processing and Management of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU 2020, Lisbon, Portugal, June 15–19, 2020, Proceedings, Part I, 485-496. Cham : Springer International Publishing
STARTPAGE=485;ENDPAGE=496;TITLE=Lesot, M.-J. (ed.), Information Processing and Management of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU 2020, Lisbon, Portugal, June 15–19, 2020, Proceedings, Part I
Lesot, M.-J. (ed.), Information Processing and Management of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU 2020, Lisbon, Portugal, June 15–19, 2020, Proceedings, Part I, pp. 485-496
Lesot, M.-J. (ed.), Information Processing and Management of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU 2020, Lisbon, Portugal, June 15–19, 2020, Proceedings, Part I, 485-496. Cham : Springer International Publishing
STARTPAGE=485;ENDPAGE=496;TITLE=Lesot, M.-J. (ed.), Information Processing and Management of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU 2020, Lisbon, Portugal, June 15–19, 2020, Proceedings, Part I
Lesot, M.-J. (ed.), Information Processing and Management of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU 2020, Lisbon, Portugal, June 15–19, 2020, Proceedings, Part I, pp. 485-496
Real-world datasets often contain many missing values due to several reasons. This is usually an issue since many learning algorithms require complete datasets. In certain cases, there are constraints in the real world problem that create difficultie
Autor:
Hanoch, Ofir, Bastürk, Nalan, Almeida, Rui Jorge, Habtewold, Tesfa Dejenie, Ciucci, Davide, Couso, Inés, Slezak, Dominik, Petturiti, Davide, Bouchon-Meunier, Bernadette, Yager, Ronald R.
Publikováno v:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022: 19th International Conference, IPMU 2022 Milan, Italy, July 11-15, 2022 Proceedings, Part II, 223-234
STARTPAGE=223;ENDPAGE=234;TITLE=Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022
Information Processing and Management of Uncertainty in Knowledge-Based Systems ISBN: 9783031089732
STARTPAGE=223;ENDPAGE=234;TITLE=Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022
Information Processing and Management of Uncertainty in Knowledge-Based Systems ISBN: 9783031089732
In several fields, sample data are observed at discrete instead of continuous levels. For example, in psychology an individual’s disease level is typically observed as ‘mild’, ‘moderate’ or ‘strong’, while the underlying mental disorder
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5a4909ef52477ef72fbe9419b2f8e3e2
https://cris.maastrichtuniversity.nl/en/publications/110ca843-2ed5-484b-8a68-0d0e4c787b62
https://cris.maastrichtuniversity.nl/en/publications/110ca843-2ed5-484b-8a68-0d0e4c787b62
Autor:
Clark Glymour, Ruben Sanchez-Romero, Joseph D. Ramsey, Biwei Huang, Madelyn R. K. Glymour, Kun Zhang
Publikováno v:
Network Neuroscience, Vol 3, Iss 2, Pp 274-306 (2019)
Network Neuroscience
Network Neuroscience
We test the adequacies of several proposed and two new statistical methods for recovering the causal structure of systems with feedback from synthetic BOLD time series. We compare an adaptation of the first correct method for recovering cyclic linear
Publikováno v:
Energy Research & Social Science, 45, 75-80. Elsevier
Energy Research & Social Science, 45, 75-80. ELSEVIER SCIENCE BV
Energy Research & Social Science, 45, 75-80. ELSEVIER SCIENCE BV
Randomised controlled trials are strongly advocated to evaluate the effects of intervention programmes on household energy saving behaviours. While randomised controlled trials are the ideal, in many cases, they are not feasible. Notably, many interv