Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Graph equation"'
Publikováno v:
In Applied Mathematics and Computation 30 April 2016 281:130-136
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
From a graph G related graphs can be constructed, such as its line graph L(G) and its edge-complement graph \bar{G}. After showing how properties of G imply properties of L(G), we ask how different the concepts of the line graph and that of the edge-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4612::235fb65cbc5d58afc61cc685f470b21a
https://research.vu.nl/en/publications/6ed5768a-7d8e-4d07-b8df-6068be6b1ea6
https://research.vu.nl/en/publications/6ed5768a-7d8e-4d07-b8df-6068be6b1ea6
Autor:
Senja Barthel, Fabio Buccoliero
Publikováno v:
Barthel, S & Buccoliero, F 2021, A graph equation between the line graph and the edge-complement graph . in Proceedings of the 3rd BYMAT Conference : Vol 2 . vol. 2, TEMat monográficos, Asociación Nacional de Estudiantes de Matemáticas (ANEM), pp. 231-234 . < https://temat.es/monograficos/article/view/vol2-p231 >
Vrije Universiteit Amsterdam
Proceedings of the 3rd BYMAT Conference: Vol 2, 2, 231-234
Vrije Universiteit Amsterdam
Proceedings of the 3rd BYMAT Conference: Vol 2, 2, 231-234
From a graph G related graphs can be constructed, such as its line graph L(G) and its edge-complement graph \bar{G}. After showing how properties of G imply properties of L(G), we ask how different the concepts of the line graph and that of the edge-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::600ce0b41c563f231a5fe91406b625c9
https://hdl.handle.net/1871.1/6ed5768a-7d8e-4d07-b8df-6068be6b1ea6
https://hdl.handle.net/1871.1/6ed5768a-7d8e-4d07-b8df-6068be6b1ea6
We prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold $M$ with only one end if $M$ has asymptotically non-negative sectional curva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63c664be3f8f10f5037ee3b428ed5db0
http://hdl.handle.net/10138/312016
http://hdl.handle.net/10138/312016
Publikováno v:
Potential Analysis
Potential Analysis, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, Springer Verlag, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, Springer Verlag, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
We study the Dirichlet problem at infinity on a Cartan-Hadamard manifold M of dimension n 2 for a large class of operators containing, in particular, the p-Laplacian and the minimal graph operator. We extend several existence results obtained for the
Publikováno v:
International Journal of Algebra and Computation. 27:23-40
This paper deals with the reducibility property of semidirect products of the form [Formula: see text] relatively to graph equation systems, where D denotes the pseudovariety of definite semigroups. We show that if the pseudovariety [Formula: see tex
Publikováno v:
Journal of Geometric Analysis
Journal of Geometric Analysis, 2016, ⟨10.1007/s12220-016-9712-0⟩
Journal of Geometric Analysis, 2016, ⟨10.1007/s12220-016-9712-0⟩
We study the asymptotic Dirichlet problem for the minimal graph equation on a Cartan-Hadamard manifold $M$ whose radial sectional curvatures outside a compact set satisfy an upper bound $$K(P)\le - \frac{\phi(\phi-1)}{r(x)^2}$$ and a pointwise pinchi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c14358094aa8bfab9a742696466b6b25
http://hdl.handle.net/10138/214841
http://hdl.handle.net/10138/214841
Publikováno v:
Applied Mathematics and Computation. 281:130-136
An open quipu is a tree constructed by attaching a pendant path to every internal vertex of a path. We show that the graph equation W ( L 2 ( T ) ) = W ( T ) has infinitely many non-homeomorphic solutions among open quipus. Here W(G) and L(G) denote