Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Grant Van Horn"'
Autor:
Benjamin M. Van Doren, Andrew Farnsworth, Kate Stone, Dylan M. Osterhaus, Jacob Drucker, Grant Van Horn
Publikováno v:
Methods in Ecology and Evolution, Vol 15, Iss 2, Pp 329-344 (2024)
Abstract Animal migration is one of nature's most spectacular phenomena, but migratory animals and their journeys are imperilled across the globe. Migratory birds are among the most well‐studied animals on Earth, yet relatively little is known abou
Externí odkaz:
https://doaj.org/article/16f0a4cd9f39485291455e20722cbf0d
Autor:
Devis Tuia, Benjamin Kellenberger, Sara Beery, Blair R. Costelloe, Silvia Zuffi, Benjamin Risse, Alexander Mathis, Mackenzie W. Mathis, Frank van Langevelde, Tilo Burghardt, Roland Kays, Holger Klinck, Martin Wikelski, Iain D. Couzin, Grant van Horn, Margaret C. Crofoot, Charles V. Stewart, Tanya Berger-Wolf
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-15 (2022)
Animal ecologists are increasingly limited by constraints in data processing. Here, Tuia and colleagues discuss how collaboration between ecologists and data scientists can harness machine learning to capitalize on the data generated from technologic
Externí odkaz:
https://doaj.org/article/51b664d701d748659895800d53d6ecbf
Autor:
Benjamin M. Van Doren, Andrew Farnsworth, Kate Stone, Dylan M. Osterhaus, Jacob Drucker, Grant Van Horn
Animal migration is one of nature’s most spectacular phenomena, but migratory animals and their journeys are imperiled across the globe. Migratory birds are among the most well-studied animals on Earth, yet relatively little is known about in-fligh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::34d74a0d1e2775f335e567d73684039c
https://doi.org/10.1101/2023.05.22.541336
https://doi.org/10.1101/2023.05.22.541336
Publikováno v:
Ornithological Applications. 125
It is imperative to identify factors that influence population trends for declining species, but demographic parameters can be especially challenging to quantify for birds, such as Whimbrels (Numenius phaeopus), that breed in locations that are logis
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200731
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d05d6b9dceb68c608097ce2151cd2224
https://doi.org/10.1007/978-3-031-20074-8_16
https://doi.org/10.1007/978-3-031-20074-8_16
Autor:
Justin Kay, Peter Kulits, Suzanne Stathatos, Siqi Deng, Erik Young, Sara Beery, Grant Van Horn, Pietro Perona
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200731
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fa2cf9c5700d22ada3996c4654f65880
https://doi.org/10.1007/978-3-031-20074-8_17
https://doi.org/10.1007/978-3-031-20074-8_17
Autor:
Elijah Cole, Kimberly Wilber, Grant Van Horn, Xuan Yang, Marco Fornoni, Pietro Perona, Serge Belongie, Andrew Howard, Oisin Mac Aodha
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200793
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bd5a98b458f12c07071565dfec7d36f4
https://doi.org/10.1007/978-3-031-20080-9_35
https://doi.org/10.1007/978-3-031-20080-9_35
Publikováno v:
Van Horn, G, Cole, E, Beery, S, Wilber, K, Belongie, S & Mac Aodha, O 2021, Benchmarking Representation Learning for Natural World Image Collections . in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Institute of Electrical and Electronics Engineers (IEEE), pp. 12884-12893, IEEE Conference on Computer Vision and Pattern Recognition 2021, 19/06/21 . https://doi.org/10.1109/CVPR46437.2021.01269
CVPR
CVPR
Recent progress in self-supervised learning has resulted in models that are capable of extracting rich representations from image collections without requiring any explicit label supervision. However, to date the vast majority of these approaches hav
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c2037a5fead6656a53e75b023c1bca3
https://www.pure.ed.ac.uk/ws/files/218951843/Benchmarking_Representation_Learning_VAN_HORN_DOA28022021_AFV.pdf
https://www.pure.ed.ac.uk/ws/files/218951843/Benchmarking_Representation_Learning_VAN_HORN_DOA28022021_AFV.pdf
Autor:
Grant Van Horn, Tim Robertson, John Waller, Hartwig Adam, Denis Brulé, Sara Beery, Oisin Mac Aodha, Chenyang Zhang, Christine Kaeser-Chen, Scott Loarie, Yulong Liu, Kiat Chuan Tan, Kyle Copas, Serge Belongie, Pietro Perona, Cédric Deltheil
Publikováno v:
Biodiversity Information Science and Standards 3: e37230
Advances in machine vision technology are rapidly enabling new and innovative uses within the field of biodiversity. Computers are now able to use images to identify tens of thousands of species across a wide range of taxonomic groups in real time, n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f51cc74764cdf11b1ee1e4e95b574451
https://zenodo.org/record/3257870
https://zenodo.org/record/3257870
Publikováno v:
Computer Vision – ECCV 2018 ISBN: 9783030012694
ECCV (16)
ECCV (16)
It is desirable for detection and classification algorithms to generalize to unfamiliar environments, but suitable benchmarks for quantitatively studying this phenomenon are not yet available. We present a dataset designed to measure recognition gene
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::754ad5a1304f04cbd9cb8e8d63cf01e5
https://resolver.caltech.edu/CaltechAUTHORS:20190327-085924057
https://resolver.caltech.edu/CaltechAUTHORS:20190327-085924057