Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Graham Keiper"'
For all integers 4 ≤ r ≤ d 4 \leq r \leq d , we show that there exists a finite simple graph G = G r , d G= G_{r,d} with toric ideal I G ⊂ R I_G \subset R such that R / I G R/I_G has (Castelnuovo–Mumford) regularity r r and h h -polynomial of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a430068fc0fc87ccbb749e8c84636b9
http://arxiv.org/abs/2003.07149
http://arxiv.org/abs/2003.07149
Let $I \subseteq R = \mathbb{K}[x_1,\ldots,x_n]$ be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal $I$ can be "split" into the sum of two smaller toric ideals. For a general toric ideal $I$, we give a sufficient condition
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f158ea1de06f8cf53f69d1e0e28208a
http://arxiv.org/abs/1909.12820
http://arxiv.org/abs/1909.12820
Autor:
Johannes Hofscheier, Adam Van Tuyl, Craig Kohne, Miguel Eduardo Uribe Paczka, Graham Keiper, Federico Galetto
We compute the graded Betti numbers for the toric ideal of a family of graphs constructed by adjoining a cycle to a complete bipartite graph. The key observation is that this family admits an initial ideal which has linear quotients. As a corollary,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0d8e6cb48fc5a226c038ca571a01a99