Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Grady, Ryan E."'
Autor:
Grady, Ryan E., Schenfisch, Anna
Persistence modules stratify their underlying parameter space, a quality that make persistence modules amenable to study via invariants of stratified spaces. In this article, we extend a result previously known only for one-parameter persistence modu
Externí odkaz:
http://arxiv.org/abs/2306.06540
Autor:
Grady, Ryan E., Schenfisch, Anna
Publikováno v:
Homology, Homotopy, and Applications, Vol 25, no 2 (2023)
Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise fro
Externí odkaz:
http://arxiv.org/abs/2110.04591
Autor:
Grady, Ryan E., Oren, Garrett
Publikováno v:
Grad. J. Math. 6 (2021), no. 2, 1-8
The center construction is not (classically) functorial. In this note, we specialize a universal construction of Jacob Lurie to the category of rings and upgrade the classical center to a lax functor. In particular, we find lax functors to the Morita
Externí odkaz:
http://arxiv.org/abs/2109.03122
Autor:
Grady, Ryan E., Schenfisch, Anna
Here, we introduce a new definition of regular point for piecewise-linear (PL) functions on combinatorial (PL triangulated) manifolds. This definition is given in terms of the restriction of the function to the link of the point. We show that our def
Externí odkaz:
http://arxiv.org/abs/2011.08404
Autor:
Grady, Ryan E.
Publikováno v:
Internat. J. Modern Phys. A {\bf 35} (2020), no. 30, 2030017, 27 pp
In this review we discuss several topological and geometric invariants obtained by quantizing $\sigma$-models. More precisely, we don't quantize the entire mapping stack of fields, but rather only the substack of low energy fields. The theory restric
Externí odkaz:
http://arxiv.org/abs/2009.04064
Autor:
Grady, Ryan E., Poston, Mark
Publikováno v:
Pi Mu Epsilon J. 15 (2021), no. 5, 275-282
In this note, we offer a palatable introduction to the field of arithmetic dynamics. That is, we study the patterns that arise when iterating a polynomial map. This note is accessible to those who have taken an introductory proof based course and som
Externí odkaz:
http://arxiv.org/abs/1908.01831
Autor:
Grady, Ryan E., Gwilliam, Owen
Publikováno v:
J. Inst. Math. Jussieu 19 (2020), no. 2, 487-535
In this paper, we relate Lie algebroids to Costello's version of derived geometry. For instance, we show that each Lie algebroid $L$-and the natural generalization to dg Lie algebroids-provides an (essentially unique) $L_\infty$ space. More precisely
Externí odkaz:
http://arxiv.org/abs/1604.00711
Autor:
Grady, Ryan E.
Motivated by families of formal moduli problems, in this note we generalize the notion of L-infinity space by allowing sheaves of L-infinity algebras over any (reasonable) nilpotent dg manifold. We discuss various examples including those coming from
Externí odkaz:
http://arxiv.org/abs/1603.06930
Publikováno v:
Advances in Mathematics 317 (2017), 575-639
Into a geometric setting, we import the physical interpretation of index theorems via semi-classical analysis in topological quantum field theory. We develop a direct relationship between Fedosov's deformation quantization of a symplectic manifold X
Externí odkaz:
http://arxiv.org/abs/1507.01812
D. A. Kahzdan first put forth property (T) in relation to the study of discrete subgroups of Lie groups of finite co-volume. Through a combinatorial approach, we define an analogue of property (T) for regular graphs. We then prove the basic combinato
Externí odkaz:
http://arxiv.org/abs/math/0607351