Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Gradimir Milovanović"'
Autor:
Zoran Babović, Branislav Bajat, Dusan Barac, Vesna Bengin, Vladan Đokić, Filip Đorđević, Dražen Drašković, Nenad Filipović, Stephan French, Borko Furht, Marija Ilić, Ayhan Irfanoglu, Aleksandar Kartelj, Milan Kilibarda, Gerhard Klimeck, Nenad Korolija, Miloš Kotlar, Miloš Kovačević, Vladan Kuzmanović, Jean-Marie Lehn, Dejan Madić, Marko Marinković, Miodrag Mateljević, Avi Mendelson, Fedor Mesinger, Gradimir Milovanović, Veljko Milutinović, Nenad Mitić, Aleksandar Nešković, Nataša Nešković, Boško Nikolić, Konstantin Novoselov, Arun Prakash, Jelica Protić, Ivan Ratković, Diego Rios, Dan Shechtman, Zoran Stojadinović, Andrey Ustyuzhanin, Stan Zak
Publikováno v:
Journal of Big Data, Vol 10, Iss 1, Pp 1-25 (2023)
Abstract This article describes a teaching strategy that synergizes computing and management, aimed at the running of complex projects in industry and academia, in the areas of civil engineering, physics, geosciences, and a number of other related fi
Externí odkaz:
https://doaj.org/article/07923dc0e30449e3b7f3575e73f2bb11
Publikováno v:
Mathematica Moravica. 26:37-46
We introduce a generalization of the array type polynomials by using two specific generating functions and investigate some of its basic properties in the sequel. A recurrence relation and two summation formulas involving these polynomials are also g
Publikováno v:
Mathematical Communications
Volume 23
Issue 1
Volume 23
Issue 1
One class of the linear multistep methods for solving the Cauchy problems of the form $ y'=F(x,y) $, $ y(x_{0})=y_{0} $, contains Adams-Bashforth rules of the form $y_{n+1}=y_{n}+hsum_{i=0}^{k-1} B_i^{(k)} F(x_{n-i},y_{n-i})$, where ${ B_i^{(k)}} _{i
Interpolation of functions is one of the basic part of Approximation Theory. There are many books on approximation theory, including interpolation methods that - peared in the last fty years, but a few of them are devoted only to interpolation proces
Publikováno v:
Numerische Mathematik; May2009, Vol. 112 Issue 3, p425-448, 24p