Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Gr.C. Moisil"'
Autor:
Gr.C. Moisil
This chapter describes networks with three polarized relays. Combinational networks with three three-position push-buttons are analyzed in the chapter. The chapter discusses the problem of constructing a network with three three-position push buttons
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6061d0706de918b2998146dd7f29ffe3
https://doi.org/10.1016/b978-0-08-010148-4.50019-0
https://doi.org/10.1016/b978-0-08-010148-4.50019-0
Autor:
Gr.C. Moisil
This chapter focuses on networks with four ordinary relays. The remainder modulo 2 of the division of a polynomial A having integer coefficients by the polynomial x 4 + x + 1, is a polynomial of the third degree A ≡ ( x 4 + x + 1) Q(x) + ax 3 + a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cdcd86321ff0ddbd8538a5e227c286e9
https://doi.org/10.1016/b978-0-08-010148-4.50017-7
https://doi.org/10.1016/b978-0-08-010148-4.50017-7
Autor:
Gr.C. Moisil
This chapter discusses networks with two polarized relays. Any polynomial is congruent, with respect to the double modulus (3, x 2 + 1), to a polynomial a ′ x + a ′′; a ′, a ′′ taking on the values 0, 1, or 2. The chapter discusses constr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dd1758b835b7c87e15261af050db9166
https://doi.org/10.1016/b978-0-08-010148-4.50018-9
https://doi.org/10.1016/b978-0-08-010148-4.50018-9
Autor:
Gr.C. Moisil
Publisher Summary This chapter focuses on isomorphic networks. It focuses on two networks: for the first network, the structural formula is y¯;X U xY and its recurrence equations are xN+1 = y¯;N, yN+1 = xN. Starting from the initial position, x0 =
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b51de150ad9c6888d8b8b58c0b1f4b2d
https://doi.org/10.1016/b978-0-08-010148-4.50034-7
https://doi.org/10.1016/b978-0-08-010148-4.50034-7
Autor:
Gr.C. Moisil
This chapter discusses the operation of bistable relays. By bistable relays are meant relays whose armatures are magnetic, but which have only two positions and remain in the position they are in, until a new operation occurs. If, in the time interva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c2b8b60135516c317f618e4a85044c9c
https://doi.org/10.1016/b978-0-08-010148-4.50008-6
https://doi.org/10.1016/b978-0-08-010148-4.50008-6
Autor:
Gr.C. Moisil
This chapter discusses the operation of networks with electronic tubes. An example of such network is presented in the chapter. If the supply voltage E a is sufficiently large when a voltage e near the value of 0 V, depending on the tube characterist
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ab81bbdf518eca3758346468889260e4
https://doi.org/10.1016/b978-0-08-010148-4.50026-8
https://doi.org/10.1016/b978-0-08-010148-4.50026-8
Autor:
Gr.C. Moisil
Publisher Summary This chapter provides an overview of exact programs. An exact program is realizable if there exist a network to realize it. An exact program is realizable with ordinary relays, realizable with polarized relays, realizable with ordin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0011917643426dd09fdd3c97f241d013
https://doi.org/10.1016/b978-0-08-010148-4.50029-3
https://doi.org/10.1016/b978-0-08-010148-4.50029-3
Autor:
Gr.C. Moisil
This chapter describes the simultaneous use of several different fields. It focuses on a network with two ordinary contacts x and y . The network can have four positions: x = 0, y = 0; x = 0, y = 1; x = 1, y = 0; and x = 1, y = 1. This means that the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ba78c2dc631ec16c579d976decc24dbf
https://doi.org/10.1016/b978-0-08-010148-4.50021-9
https://doi.org/10.1016/b978-0-08-010148-4.50021-9
Autor:
Gr.C. Moisil
This chapter discusses networks with multi-position contacts. It presents functions whose domain is finite and whose range is a field. The chapter presents a finite set M with m elements that are denoted by 0, 1,…, m −1. The product of two intege
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::578aa8f48c4ae2f2aba2a965232a2a28
https://doi.org/10.1016/b978-0-08-010148-4.50022-0
https://doi.org/10.1016/b978-0-08-010148-4.50022-0