Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Grégory Ginot"'
Publikováno v:
Advances in Mathematics. 409:108631
We offer a new approach to large $N$ limits using the Batalin-Vilkovisky formalism, both commutative and noncommutative, and we exhibit how the Loday-Quillen-Tsygan Theorem admits BV quantizations in that setting. Matrix integrals offer a key example
Autor:
Mathieu Stiénon, Grégory Ginot
Publikováno v:
Journal of Symplectic Geometry. 13:1001-1047
Let $G$ be a Lie group and $G\to\Aut(G)$ be the canonical group homomorphism induced by the adjoint action of a group on itself. We give an explicit description of a 1-1 correspondence between Morita equivalence classes of, on the one hand, principal
Autor:
Grégory Ginot
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783319694337
This paper is based on lectures given at the Vietnamese Institute for Advanced Studies in Mathematics and aims to present the theory of higher Hochschild (co)homology and its application to higher string topology. There is an emphasis on explicit com
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0ef2ddbd874286533dd1a68d8f15bea6
https://doi.org/10.1007/978-3-319-69434-4_1
https://doi.org/10.1007/978-3-319-69434-4_1
Publikováno v:
Annales Scientifiques de l'École Normale Supérieure. Quatrième Série
We develop a machinery of Chen iterated integrals for higher Hochschild complexes. These are complexes whose differentials are modeled on an arbitrary simplicial set much in the same way the ordinary Hochschild differential is modeled on the circle.
Autor:
Grégory Ginot
Publikováno v:
Comptes Rendus Mathematique. 346:5-10
Following ideas of Pirashvili, we define higher order Hochschild cohomology over spheres Sd defined for any commutative algebra A and module M. When M=A, we prove that this cohomology is equipped with graded commutative algebra and degree d Lie algeb
Publikováno v:
Comptes Rendus Mathematique. 344:247-252
We prove that the homology groups of the free loop stack of an oriented stack are equipped with a canonical loop product and coproduct, which makes it into a Frobenius algebra. Moreover, the shifted homology H • ( L X ) = H • + d ( L X ) admits a
Autor:
Grégory Ginot
Publikováno v:
Mathematical Aspects of Quantum Field Theories
Mathematical Aspects of Quantum Field Theories, Springer International Publishing, pp.429-552, 2015, Mathematical Physics Studies, ⟨10.1007/978-3-319-09949-1_13⟩
Mathematical Physics Studies ISBN: 9783319099484
Mathematical Aspects of Quantum Field Theories, Springer International Publishing, pp.429-552, 2015, Mathematical Physics Studies, ⟨10.1007/978-3-319-09949-1_13⟩
Mathematical Physics Studies ISBN: 9783319099484
These notes are an expanded version of two series of lectures given at the winter school in mathematical physics at les Houches and at the Vietnamese Institute for Mathematical Sciences. They are an introduction to factorization algebras, factorizati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01b29f0e340d13b5f8c42a82476697b9
https://hal.science/hal-03864707
https://hal.science/hal-03864707
Autor:
Gilles Halbout, Grégory Ginot
Publikováno v:
Proceedings of the American Mathematical Society. 134:621-630
Let g 2 \mathfrak {g}_2 be the Hochschild complex of cochains on C ∞ ( R n ) C^\infty (\mathbb {R}^n) and let g 1 \mathfrak {g}_1 be the space of multivector fields on R n \mathbb {R}^n . In this paper we prove that given any G ∞ G_\infty -struct
Autor:
Grégory Ginot
Publikováno v:
Annales mathématiques Blaise Pascal. 11:95-126
On etudie ici les notions d'algebre de Gerstenhaber a homotopie pres et d'homologie des algebres de Gerstenhaber du point de vue de la theorie des operades. Precisement, on donne une description explicite des C-algebres a homotopie pres (c'est-a-dire
Autor:
Gilles Halbout, Grégory Ginot
Publikováno v:
Letters in Mathematical Physics. 66:37-64
Let M be a differential manifold. Using different methods, Kontsevich and Tamarkin have proved a formality theorem, which states the existence of a Lie homomorphism 'up to homotopy' between the Lie algebra of Hochschild cochains on C ∞(M) and its c