Zobrazeno 1 - 10
of 243
pro vyhledávání: '"Goulet, James A."'
Publikováno v:
In International Journal of Forecasting January-March 2025 41(1):128-140
This paper describes OpenIPDM software for modelling the deterioration process of infrastructures using network-scale visual inspection data. In addition to the deterioration state estimates, OpenIPDM provides functions for quantifying the effect of
Externí odkaz:
http://arxiv.org/abs/2201.08254
Autor:
Nguyen, Luong-Ha, Goulet, James-A.
With few exceptions, neural networks have been relying on backpropagation and gradient descent as the inference engine in order to learn the model parameters, because the closed-form Bayesian inference for neural networks has been considered to be in
Externí odkaz:
http://arxiv.org/abs/2107.03759
Reinforcement learning (RL) has gained increasing interest since the demonstration it was able to reach human performance on video game benchmarks using deep Q-learning (DQN). The current consensus for training neural networks on such complex environ
Externí odkaz:
http://arxiv.org/abs/2106.11086
Autor:
Xin, Zhanwen, Goulet, James-A.
Publikováno v:
In Mechanical Systems and Signal Processing 15 April 2024 212
Publikováno v:
In Neurocomputing 1 March 2024 572
Autor:
Nguyen, Luong-Ha, Goulet, James-A.
Since its inception, deep learning has been overwhelmingly reliant on backpropagation and gradient-based optimization algorithms in order to learn weight and bias parameter values. Tractable Approximate Gaussian Inference (TAGI) algorithm was shown t
Externí odkaz:
http://arxiv.org/abs/2103.05461
Publikováno v:
Journal of Machine Learning Research, Volume 22, Number 251, Pages 1-23 (2021)
In this paper, we propose an analytical method for performing tractable approximate Gaussian inference (TAGI) in Bayesian neural networks. The method enables the analytical Gaussian inference of the posterior mean vector and diagonal covariance matri
Externí odkaz:
http://arxiv.org/abs/2004.09281
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hamida, Zachary, Goulet, James-A.
Publikováno v:
In Reliability Engineering and System Safety July 2023 235