Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Gould, N I M"'
Autor:
Gould, N. I. M., Toint, Ph. L.
An adaptive regularization algorithm for unconstrained nonconvex optimization is proposed that is capable of handling inexact objective-function and derivative values, and also of providing approximate minimizer of arbitrary order. In comparison with
Externí odkaz:
http://arxiv.org/abs/2111.14098
A trust-region algorithm using inexact function and derivatives values is introduced for solving unconstrained smooth optimization problems. This algorithm uses high-order Taylor models and allows the search of strong approximate minimizers of arbitr
Externí odkaz:
http://arxiv.org/abs/2011.00854
Publikováno v:
Journal of Complexity, vol. 53, pp. 68-94, 2019
Necessary conditions for high-order optimality in smooth nonlinear constrained optimization are explored and their inherent intricacy discussed. A two-phase minimization algorithm is proposed which can achieve approximate first-, second- and third-or
Externí odkaz:
http://arxiv.org/abs/1705.07285
Autor:
Cartis, C.1 (AUTHOR) coralia.cartis@maths.ox.ac.uk, Gould, N. I. M.2 (AUTHOR), Toint, Ph. L.3 (AUTHOR)
Publikováno v:
Optimization Methods & Software. Apr2020, Vol. 35 Issue 2, p243-256. 14p.
Publikováno v:
SIAM Journal on Numerical Analysis, 2010 Jan 01. 48(1), 1-29.
Externí odkaz:
https://www.jstor.org/stable/41062732
Autor:
Conn, A. R., Gould, N. I. M.
Publikováno v:
SIAM Journal on Numerical Analysis, 1989 Jun 01. 26(3), 764-767.
Externí odkaz:
https://www.jstor.org/stable/2157682
Autor:
Conn, A. R., Gould, N. I. M.
Publikováno v:
SIAM Journal on Numerical Analysis, 1988 Apr 01. 25(2), 433-460.
Externí odkaz:
https://www.jstor.org/stable/2157325
Publikováno v:
Cartis, C, Gould, N I M & Toint, P 2019, ' Optimality of orders one to three and beyond : Characterization and evaluation complexity in constrained nonconvex optimization ', Journal of Complexity, vol. 53, pp. 68-94 . https://doi.org/2018_TointPh_Article
Necessary conditions for high-order optimality in smooth nonlinear constrained optimization are explored and their inherent intricacy discussed. A two-phase minimization algorithm is proposed which can achieve approximate first-, second- and third-or
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4291::b6ea7ab58c6d6a2082be56bf2fbfa8c6
https://pure.unamur.be/ws/files/38009496/cgt57.pdf
https://pure.unamur.be/ws/files/38009496/cgt57.pdf
Autor:
Gould, N I M, Simoncini, V
We derive bounds for the objective errors and gradient residuals when finding approximations to the solution of common regularized quadratic optimization problems within evolving Krylov spaces. These provide upper bounds on the number of iterations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9979b352413c6d121944db91fec260f1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.