Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Goujard, Élise"'
A meander can be seen as a pair of transversally intersecting simple closed curves on a 2-sphere. We consider pairs of transversally intersecting simple closed curves on a closed oriented surface of arbitrary genus g. The number of such higher genus
Externí odkaz:
http://arxiv.org/abs/2304.02567
Publikováno v:
Duke Mathematical Journal, 170 no. 12 (2021), 2633-2718
We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space $\mathcal{Q}_{g,n}$ of genus $g$ meromorphic quadratic differentials with $n$ simple poles as polynomials in the intersection numbers of $\psi$-classes with expl
Externí odkaz:
http://arxiv.org/abs/2011.05306
Publikováno v:
Inventiones mathematicae, 230:1 (2022), 123-224
We study the combinatorial geometry of a random closed multicurve on a surface of large genus and of a random square-tiled surface of large genus. We prove that primitive components of a random multicurve represent linearly independent homology cycle
Externí odkaz:
http://arxiv.org/abs/2007.04740
Publikováno v:
SIGMA 16 (2020), 086, 13 pages
We approximate intersection numbers $\big\langle \psi_1^{d_1}\cdots \psi_n^{d_n}\big\rangle_{g,n}$ on Deligne-Mumford's moduli space $\overline{\mathcal M}_{g,n}$ of genus $g$ stable complex curves with $n$ marked points by certain closed-form expres
Externí odkaz:
http://arxiv.org/abs/2004.02749
Publikováno v:
Arnold Math. Journal, 6:2 (2020), 149-161
We state conjectures on the asymptotic behavior of the Masur-Veech volumes of strata in the moduli spaces of meromorphic quadratic differentials and on the asymptotics of their area Siegel-Veech constants as the genus tends to infinity.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/1912.11702
We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space of meromorphic quadratic differential with simple poles as polynomials in the intersection numbers of psi-classes supported on the boundary cycles of the Deligne
Externí odkaz:
http://arxiv.org/abs/1908.08611
Publikováno v:
Ast\'erisque No. 415, Quelques aspects de la th\'eorie des syst\`emes dynamiques: un hommage \`a Jean-Christophe Yoccoz. I (2020), 223--274
We compute explicitly the absolute contribution of square-tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any ambient stratum of Abelian differentials. The resulting count is particularly simple and efficient in the la
Externí odkaz:
http://arxiv.org/abs/1903.10904
Autor:
Goujard, Elise, Moeller, Martin
Publikováno v:
Algebr. Geom. Topol. 20 (2020) 2451-2510
We prove the quasimodularity of generating functions for counting pillowcase covers, with and without Siegel-Veech weight. Similar to prior work on torus covers, the proof is based on analyzing decompositions of half-translation surfaces into horizon
Externí odkaz:
http://arxiv.org/abs/1809.05016
Publikováno v:
Forum of Mathematics, Pi (2020), Vol. 8, e4
A meander is a topological configuration of a line and a simple closed curve in the plane (or a pair of simple closed curves on the 2-sphere) intersecting transversally. Meanders can be traced back to H. Poincar\'e and naturally appear in various are
Externí odkaz:
http://arxiv.org/abs/1705.05190
We prove that square-tiled surfaces having fixed combinatorics of horizontal cylinder decomposition and tiled with smaller and smaller squares become asymptotically equidistributed in any ambient linear $GL(\mathbb R)$-invariant suborbifold defined o
Externí odkaz:
http://arxiv.org/abs/1612.08374