Zobrazeno 1 - 10
of 334
pro vyhledávání: '"Goto Yoshiaki"'
Autor:
Goto, Yoshiaki
The Riemann-Wirtinger integral is an analogue of the hypergeometric integral, which is defined as an integral on a one-dimensional complex torus. We study the intersection forms on the twisted homology and cohomology groups associated with the Rieman
Externí odkaz:
http://arxiv.org/abs/2206.03177
We describe the homology intersection form associated to regular holonomic GKZ systems in terms of the combinatorics of regular triangulations. Combining this result with the twisted period relation, we obtain a formula of cohomology intersection num
Externí odkaz:
http://arxiv.org/abs/2006.07848
Autor:
Ono Koji, Iwama Makoto, Kawasaki Masanori, Tanaka Ryuhei, Watanabe Takatomo, Onishi Noriyuki, Warita Shunichiro, Kojima Tai, Kato Takashi, Goto Yoshiaki, Arai Masazumi, Nishigaki Kazuhiko, Takemura Genzou, Noda Toshiyuki, Watanabe Sachiro, Minatoguchi Shinya
Publikováno v:
Cardiovascular Ultrasound, Vol 10, Iss 1, p 50 (2012)
Abstract Background The aim of this study was to define the independent determinants of left atrial appendage (LAA) thrombus among various echocardiographic parameters measured by Velocity Vector Imaging (VVI) in patients with nonvalvular atrial fibr
Externí odkaz:
https://doaj.org/article/0aac5addafd74978808d9897b1af1ca6
Autor:
Goto, Yoshiaki
We study the conditions under which the monodromy group for Lauricella's hypergeometric function $F_C (a,b,c;x)$ is finite irreducible. We give the conditions in terms of the parameters $a,b,c$. In addition, we discuss the structure of the finite irr
Externí odkaz:
http://arxiv.org/abs/1905.00250
Autor:
Goto, Yoshiaki, Koike, Kenji
We study the Zariski closure of the monodromy group $\mathbf{Mon}$ of Lauricella's hypergeometric function $F_C$. If the identity component $\mathbf{Mon}^0$ acts irreducibly, then $\overline{\mathbf{Mon}} \cap \mathbf{SL}_{2^n}(\mathbb{C})$ must be o
Externí odkaz:
http://arxiv.org/abs/1807.10890
Autor:
Goto, Yoshiaki
We study the intersection numbers defined on twisted homology or cohomology groups that are associated with hypergeometric integrals corresponding to degenerate hyperplane arrangements in the projective $k$-space. We present formulas to evaluate the
Externí odkaz:
http://arxiv.org/abs/1805.01714
Publikováno v:
Alg. Stat. 11 (2020) 125-153
The holonomic gradient method gives an algorithm to efficiently and accurately evaluate normalizing constants and their derivatives. We apply the holonomic gradient method in the case of the conditional Poisson or multinomial distribution on two way
Externí odkaz:
http://arxiv.org/abs/1803.04170
Publikováno v:
In Indagationes Mathematicae May 2022 33(3):546-580
Autor:
Goto, Yoshiaki, Kaneko, Jyoichi
We study the fundamental group of the complement of the singular locus of Lauricella's hypergeometric function $F_C$ of $n$ variables. The singular locus consists of $n$ hyperplanes and a hypersurface of degree $2^{n-1}$ in the complex $n$-space. We
Externí odkaz:
http://arxiv.org/abs/1710.09594
Autor:
Goto, Yoshiaki, Matsumoto, Keiji
Let $E_C$ be the hypergeometric system of differential equations satisfied by Lauricella's hypergeometric series $F_C$ of $m$ variables. We show that the monodromy representation of $E_C$ is irreducible under our assumption consisting of $2^{m+1}$ co
Externí odkaz:
http://arxiv.org/abs/1703.09401