Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Gosztolai A"'
Autor:
Peach, Robert L., Vinao-Carl, Matteo, Grossman, Nir, David, Michael, Mallas, Emma, Sharp, David, Malhotra, Paresh A., Vandergheynst, Pierre, Gosztolai, Adam
Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euc
Externí odkaz:
http://arxiv.org/abs/2309.16746
Autor:
Gosztolai, Adam, Peach, Robert L., Arnaudon, Alexis, Barahona, Mauricio, Vandergheynst, Pierre
The dynamics of neuron populations commonly evolve on low-dimensional manifolds. Thus, we need methods that learn the dynamical processes over neural manifolds to infer interpretable and consistent latent representations. We introduce a representatio
Externí odkaz:
http://arxiv.org/abs/2304.03376
Autor:
Arnaudon, Alexis, Schindler, Dominik J., Peach, Robert L., Gosztolai, Adam, Hodges, Maxwell, Schaub, Michael T., Barahona, Mauricio
We present PyGenStability, a general-use Python software package that provides a suite of analysis and visualisation tools for unsupervised multiscale community detection in graphs. PyGenStability finds optimized partitions of a graph at different le
Externí odkaz:
http://arxiv.org/abs/2303.05385
Connecting the dots in ethology: applying network theory to understand neural and animal collectives
Autor:
Gosztolai, Adam, Ramdya, Pavan
A major goal shared by neuroscience and collective behavior is to understand how dynamic interactions between individual elements give rise to behaviors in populations of neurons and animals, respectively. This goal has recently become within reach t
Externí odkaz:
http://arxiv.org/abs/2112.02361
Autor:
Gosztolai, Adam, Arnaudon, Alexis
Describing networks geometrically through low-dimensional latent metric spaces has helped design efficient learning algorithms, unveil network symmetries and study dynamical network processes. However, latent space embeddings are limited to specific
Externí odkaz:
http://arxiv.org/abs/2106.05847
Autor:
Gosztolai, Adam, Barahona, Mauricio
The response of microbes to external signals is mediated by biochemical networks with intrinsic time scales. These time scales give rise to a memory that impacts cellular behaviour. Here we study theoretically the role of cellular memory in Escherich
Externí odkaz:
http://arxiv.org/abs/1908.04316
Motile organisms often use finite spatial perception of their surroundings to navigate and search their habitats. Yet standard models of search are usually based on purely local sensory information. To model how a finite perceptual horizon affects ec
Externí odkaz:
http://arxiv.org/abs/1809.06094
Autor:
Gosztolai, Adam, Schumacher, Jörg, Behrends, Volker, Bundy, Jacob G, Heydenreich, Franziska, Bennett, Mark H, Buck, Martin, Barahona, Mauricio
Ammonium assimilation in E. coli is regulated by two paralogous proteins (GlnB and GlnK), which orchestrate interactions with regulators of gene expression, transport proteins and metabolic pathways. Yet how they conjointly modulate the activity of g
Externí odkaz:
http://arxiv.org/abs/1704.05942
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Adam Gosztolai, Alexis Arnaudon
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
The analysis of networks and network processes can require low-dimensional representations, possible for specific structures only. The authors propose a geometric formalism which allows to unfold the mechanisms of dynamical processes propagation in v
Externí odkaz:
https://doaj.org/article/fed1b63a075347f5926d4c59c9363d26