Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Goswami, Deepjyoti"'
This paper applies a discontinuous Galerkin finite element method to the Kelvin-Voigt viscoelastic fluid motion equations when the forcing function is in $L^\infty({\bf L}^2)$-space. Optimal a priori error estimates in $L^\infty({\bf L}^2)$-norm for
Externí odkaz:
http://arxiv.org/abs/2202.04396
In this paper, both semidiscrete and fully discrete finite element methods are analyzed for the penalized two-dimensional unsteady Navier-Stokes equations with nonsmooth initial data. First order backward Euler method is applied for the time discreti
Externí odkaz:
http://arxiv.org/abs/2202.03777
In this paper, we apply discontinuous finite element Galerkin method to the time-dependent $2D$ incompressible Navier-Stokes model. We derive optimal error estimates in $L^\infty(\textbf{L}^2)$-norm for the velocity and in $L^\infty(L^2)$-norm for th
Externí odkaz:
http://arxiv.org/abs/2112.12414
In this paper, a backward Euler method combined with finite element discretization in spatial direction is discussed for the equations of motion arising in the $2D$ Oldroyd model of viscoelastic fluids of order one with the forcing term independent o
Externí odkaz:
http://arxiv.org/abs/2106.16052
Publikováno v:
In Tectonophysics 23 February 2024 873
Publikováno v:
In Tectonophysics 5 February 2023 848
Publikováno v:
In Journal of Asian Earth Sciences: X 1 December 2022 8
Publikováno v:
Computational Methods in Applied Mathematics; Oct2024, Vol. 24 Issue 4, p935-966, 32p
Publikováno v:
Mathematical Methods in the Applied Sciences; Jun2024, Vol. 47 Issue 9, p7288-7328, 41p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.