Zobrazeno 1 - 10
of 4 715
pro vyhledávání: '"Goryachev As"'
The coupling between acoustic vibrations in a lithium niobate bulk acoustic wave resonator and microwave photons of a re-entrant microwave cavity was investigated at a temperature close to 4 K. Coupling was achieved by placing the acoustic resonator
Externí odkaz:
http://arxiv.org/abs/2410.20271
Autor:
Hipp, A. T., Quiskamp, A., Caligiure, T. J., Gleason, J. R., Han, Y., Jois, S., Sikivie, P., Solano, M. E., Sullivan, N. S., Tanner, D. B., Goryachev, M., Hartman, E., Tobar, M. E., McAllister, B. T., Duffy, L. D., Braine, T., Burns, E., Cervantes, R., Crisosto, N., Goodman, C., Guzzetti, M., Hanretty, C., Lee, S., Korandla, H., Leum, G., Mohapatra, P., Nitta, T., Rosenberg, L. J, Rybka, G., Sinnis, J., Zhang, D., Bartram, C., Dyson, T. A., Kuo, C. L., Ruppert, S., Withers, M. O., Awida, M. H., Bowring, D., Chou, A. S., Hollister, M., Knirck, S., Sonnenschein, A., Wester, W., Brodsky, J., Carosi, G., Du, N., Roberston, N., Woollett, N., Boutan, C., Jones, A. M., LaRoque, B. H., Lentz, E., Man, N. E., Oblath, N. S., Taubman, M. S., Yang, J., Khatiwada, R., Clarke, John, Siddiqi, I., Agrawal, A., Dixit, A. V., Daw, E. J., Perry, M. G., Buckley, J. H., Gaikwad, C., Hoffman, J., Murch, K. W., Russell, J.
The Axion Dark Matter eXperiment is sensitive to narrow axion flows, given axions compose a fraction of the dark matter with a non-negligible local density. Detecting these low-velocity dispersion flows requires a high spectral resolution and careful
Externí odkaz:
http://arxiv.org/abs/2410.09203
A cylindrical microwave cavity resonator operating in the TM$_{0,1,0}$ mode was excited using an interferometric configuration that allowed manipulation of the electric field and potential within the resonator by adjusting the phase and amplitude in
Externí odkaz:
http://arxiv.org/abs/2410.01333
Autor:
Bartram, C., Boutan, C., Braine, T., Buckley, J. H., Caligiure, T. J., Carosi, G., Chou, A. S., Cisneros, C., Clarke, John, Daw, E. J., Du, N., Duffy, L. D., Dyson, T. A., Gaikwad, C., Gleason, J. R., Goodman, C., Goryachev, M., Guzzetti, M., Hanretty, C., Hartman, E., Hipp, A. T., Hoffman, J., Hollister, M., Khatiwada, R., Knirck, S., Kuo, C. L., Lentz, E., McAllister, B. T., Mostyn, C., Murch, K., Oblath, N. S., Perry, M. G., Quiskamp, A., Robertson, N., Rosenberg, L. J, Ruppert, S., Rybka, G., Siddiqi, I., Sikivie, P., Sinnis, J., Solano, M. E., Sonnenschein, A., Sullivan, N. S., Tanner, D. B., Taubman, M. S., Tobar, M. E., Withers, M. O., Woollett, N., Zhang, D.
We report the results of a QCD axion dark matter search with discovery ability for Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axions using an axion haloscope. Sub-Kelvin noise temperatures are reached with an ultra low-noise Josephson parametric ampli
Externí odkaz:
http://arxiv.org/abs/2408.15227
Publikováno v:
Appl. Phys. Lett. 125, 094002 (2024)
The Aharonov-Bohm effect is a quantum mechanical phenomenon that demonstrates how potentials can have observable effects even when the classical fields associated with those potentials are absent. Initially proposed for electromagnetic interactions,
Externí odkaz:
http://arxiv.org/abs/2408.14629
Autor:
Quiskamp, Aaron P., Flower, Graeme, Samuels, Steven, McAllister, Ben T., Altin, Paul, Ivanov, Eugene N., Goryachev, Maxim, Tobar, Michael E.
The latest result from The ORGAN Experiment, an axion haloscope is presented. This iteration of the experiment operated at millikelvin temperatures using a flux-driven Josephson parametric amplifier (JPA) for reduced noise, along with various other u
Externí odkaz:
http://arxiv.org/abs/2407.18586
In this work we investigate the properties of macroscopic bulk acoustic wave (BAW) devices, manufactured from crystalline piezoelectric lithium niobate at both room temperature and 4 K. We identify the fundamental acoustic modes in the crystal sample
Externí odkaz:
http://arxiv.org/abs/2407.17693
Autor:
Afzal, F., Akondi, C. S., Albrecht, M., Amaryan, M., Arrigo, S., Arroyave, V., Asaturyan, A., Austregesilo, A., Baldwin, Z., Barbosa, F., Barlow, J., Barriga, E., Barsotti, R., Barton, D., Baturin, V., Berdnikov, V. V., Black, T., Boeglin, W., Boer, M., Briscoe, W. J., Britton, T., Cao, S., Chudakov, E., Chung, G., Cole, P. L., Cortes, O., Crede, V., Dalton, M. M., Darulis, D., Deur, A., Dobbs, S., Dolgolenko, A., Dugger, M., Dzhygadlo, R., Ebersole, D., Edo, M., Egiyan, H., Erbora, T., Eugenio, P., Fabrizi, A., Fanelli, C., Fang, S., Fitches, J., Foda, A. M., Furletov, S., Gan, L., Gao, H., Gardner, A., Gasparian, A., Glazier, D., Gleason, C., Goryachev, V. S., Grube, B., Guo, J., Guo, L., Hernandez, J., Hernandez, K., Hoffman, N. D., Hornidge, D., Hou, G., Hurck, P., Hurley, A., Imoehl, W., Ireland, D. G., Ito, M. M., Jaegle, I., Jarvis, N. S., Jeske, T., Jing, M., Jones, R. T., Kakoyan, V., Kalicy, G., Khachatryan, V., Kourkoumelis, C., LaDuke, A., Larin, I., Lawrence, D., Lersch, D. I., Li, H., Liu, B., Livingston, K., Lolos, G. J., Lorenti, L., Lyubovitskij, V., Ma, R., Mack, D., Mahmood, A., Marukyan, H., Matveev, V., McCaughan, M., McCracken, M., Meyer, C. A., Miskimen, R., Mitchell, R. E., Mizutani, K., Neelamana, V., Ng, L., Nissen, E., Orešić, S., Ostrovidov, A. I., Papandreou, Z., Paudel, C., Pedroni, R., Pentchev, L., Peters, K. J., Prather, E., Rakshit, S., Reinhold, J., Remington, A., Ritchie, B. G., Ritman, J., Rodriguez, G., Romanov, D., Saldana, K., Salgado, C., Schadmand, S., Schertz, A. M., Scheuer, K., Schick, A., Schmidt, A., Schumacher, R. A., Schwiening, J., Septian, N., Sharp, P., Shen, X., Shepherd, M. R., Sikes, J., Smith, A., Smith, E. S., Sober, D. I., Somov, A., Somov, S., Stevens, J. R., Strakovsky, I. I., Sumner, B., Suresh, K., Tarasov, V. V., Taylor, S., Teymurazyan, A., Thiel, A., Viducic, T., Whitlatch, T., Wickramaarachchi, N., Wunderlich, Y., Yu, B., Zarling, J., Zhang, Z., Zhou, X., Zihlmann, B.
The spin-exotic hybrid meson $\pi_{1}(1600)$ is predicted to have a large decay rate to the $\omega\pi\pi$ final state. Using 76.6~pb$^{-1}$ of data collected with the GlueX detector, we measure the cross sections for the reactions $\gamma p \to \ome
Externí odkaz:
http://arxiv.org/abs/2407.03316
Autor:
Afzal, F., Akondi, C. S., Albrecht, M., Amaryan, M., Arrigo, S., Arroyave, V., Asaturyan, A., Austregesilo, A., Baldwin, Z., Barbosa, F., Barlow, J., Barriga, E., Barsotti, R., Barton, D., Baturin, V., Berdnikov, V. V., Black, T., Boeglin, W., Boer, M., Briscoe, W. J., Britton, T., Cao, S., Chudakov, E., Chung, G., Cole, P. L., Cortes, O., Crede, V., Dalton, M. M., Darulis, D., Deur, A., Dobbs, S., Dolgolenko, A., Dugger, M., Dzhygadlo, R., Ebersole, D., Edo, M., Egiyan, H., Erbora, T., Eugenio, P., Fabrizi, A., Fanelli, C., Fang, S., Fitches, J., Foda, A. M., Furletov, S., Gan, L., Gao, H., Gardner, A., Gasparian, A., Glazier, D. I., Gleason, C., Goryachev, V. S., Grube, B., Guo, J., Guo, L., Hernandez, J., Hernandez, K., Hoffman, N. D., Hornidge, D., Hou, G., Hurck, P., Hurley, A., Imoehl, W., Ireland, D. G., Ito, M. M., Jaegle, I., Jarvis, N. S., Jeske, T., Jing, M., Jones, R. T., Kakoyan, V., Kalicy, G., Khachatryan, V., Kourkoumelis, C., LaDuke, A., Larin, I., Lawrence, D., Lersch, D. I., Li, H., Liu, B., Livingston, K., Lolos, G. J., Lorenti, L., Lyubovitskij, V., Ma, R., Mack, D., Mahmood, A., Marukyan, H., Matveev, V., McCaughan, M., McCracken, M., Meyer, C. A., Miskimen, R., Mitchell, R. E., Mizutani, K., Neelamana, V., Ng, L., Nissen, E., Orešić, S., Ostrovidov, A. I., Papandreou, Z., Paudel, C., Pedroni, R., Pentchev, L., Peters, K. J., Prather, E., Rakshit, S., Reinhold, J., Remington, A., Ritchie, B. G., Ritman, J., Rodriguez, G., Romanov, D., Saldana, K., Salgado, C., Schadmand, S., Schertz, A. M., Scheuer, K., Schick, A., Schmidt, A., Schumacher, R. A., Schwiening, J., Septian, N., Sharp, P., Shen, X., Shepherd, M. R., Sikes, J., Smith, A., Smith, E. S., Sober, D. I., Somov, A., Somov, S., Stevens, J. R., Strakovsky, I. I., Sumner, B., Suresh, K., Tarasov, V. V., Taylor, S., Teymurazyan, A., Thiel, A., Viducic, T., Whitlatch, T., Wickramaarachchi, N., Wunderlich, Y., Yu, B., Zarling, J., Zhang, Z., Zhou, X., Zihlmann, B.
We measure the spin-density matrix elements (SDMEs) of the $\Delta^{++}(1232)$ in the photoproduction reaction $\gamma p \to \pi^-\Delta^{++}(1232)$ with the GlueX experiment in Hall D at Jefferson Lab. The measurement uses a linearly--polarized phot
Externí odkaz:
http://arxiv.org/abs/2406.12829
Autor:
McAllister, Ben T., Zhao, Zijun C., Bourhill, Jeremy F., Goryachev, Maxim, Creedon, Daniel, Johnson, Brett C., Tobar, Michael E.
Silicon is a key semiconducting material for electrical devices and hybrid quantum systems where low temperatures and zero-spin isotopic purity can enhance quantum coherence. Electrical conductivity in Si is characterised by carrier freeze out at aro
Externí odkaz:
http://arxiv.org/abs/2404.19161