Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Gorny, Matthias"'
Publikováno v:
Ann. Inst. H. Poincar\'e Probab. Statist. Volume 56, Number 2 (2020), 765-781
The dynamical Curie-Weiss model of self-organized criticality (SOC) was introduced in \cite{Gor17} and it is derived from the classical generalized Curie-Weiss by imposing a microscopic Markovian evolution having the distribution of the Curie-Weiss m
Externí odkaz:
http://arxiv.org/abs/1801.08840
Autor:
Gorny, Matthias
Dans leur célèbre article de 1987, les physiciens Per Bak, Chao Tang et Kurt Wiesenfeld ont montré que certains systèmes complexes, composés d'un nombre important d'éléments en interaction dynamique, évoluent vers un état critique, sans inte
Externí odkaz:
http://www.theses.fr/2015PA112074/document
We consider a critical Bernoulli site percolation on the uniform infinite planar triangulation. We study the tail distributions of the peeling time, perimeter, and volume of the hull of a critical cluster. The exponents obtained here differs by a fac
Externí odkaz:
http://arxiv.org/abs/1701.01667
Autor:
Wagner, Daniel, van der Meer, Liesbeth, Gorny, Matthias, Sellanes, Javier, Gaymer, Carlos F., Soto, Eulogio H., Easton, Erin E., Friedlander, Alan M., Lindsay, Dhugal J., Molodtsova, Tina N., Boteler, Ben, Durussel, Carole, Gjerde, Kristina M., Currie, Duncan, Gianni, Matthew, Brooks, Cassandra M., Shiple, Marianne J., Wilhelm, T. ‘Aulani, Quesada, Marco, Thomas, Tamara, Dunstan, Piers K., Clark, Nichola A., Villanueva, Luis A., Pyle, Richard L., Clark, Malcolm R., Georgian, Samuel E., Morgan, Lance E.
Publikováno v:
In Marine Policy April 2021 126
Autor:
Gorny, Matthias
We build and study a multidimensional version of the Curie-Weiss model of self-organized criticality we have designed in arXiv:1301.6911. For symmetric distributions satisfying some integrability condition, we prove that the sum $S_n$ of the randoms
Externí odkaz:
http://arxiv.org/abs/1510.05147
Autor:
Gorny, Matthias
In this paper, we introduce a Markov process whose unique invariant distribution is the Curie-Weiss model of self-organized criticality (SOC) we designed in arXiv:1301.6911. In the Gaussian case, we prove rigorously that it is a dynamical model of SO
Externí odkaz:
http://arxiv.org/abs/1507.00924
Autor:
Gorny, Matthias, Varadhan, S. R. S.
We extend the main theorem of arXiv:1301.6911 about the fluctuations in the Curie-Weiss model of SOC. We present a short proof using the Hubbard-Stratonovich transformation with the self-normalized sum of the random variables.
Externí odkaz:
http://arxiv.org/abs/1503.04415
Autor:
Cerf, Raphaël, Gorny, Matthias
We prove the following exponential inequality: Let $n\geq 1$ and let $X_1,...,X_n$ be $n$ independent identically distributed symmetric real-valued random variables. For any $x,y>0$, we have \[\mathbb{P}\big({X_1+...+X_n}\geq x,\, {X_1^2+...+X_n^2}\l
Externí odkaz:
http://arxiv.org/abs/1407.0839
Autor:
Cerf, Raphaël, Gorny, Matthias
Let $\rho$ and $\mu$ be two probability measures on $\mathbb{R}$ which are not the Dirac mass at $0$. We denote by $H(\mu|\rho)$ the relative entropy of $\mu$ with respect to $\rho$. We prove that, if $\rho$ is symmetric and $\mu$ has a finite first
Externí odkaz:
http://arxiv.org/abs/1407.0836
Autor:
Gorny, Matthias
In arXiv:1301.6911, we built and studied a Curie-Weiss model exhibiting self-organized criticality : it is a model with a self-interaction leading to fluctuations of order $n^{3/4}$ and a limiting law proportional to $\exp(-x^4/12)$. In this paper we
Externí odkaz:
http://arxiv.org/abs/1404.7637