Zobrazeno 1 - 10
of 4 728
pro vyhledávání: '"Gorenstein, A"'
The chemical freeze-out curve in heavy-ion collisions is investigated in the context of QCD critical point (CP) search at finite baryon densities. Taking the hadron resonance gas picture at face value, chemical freeze-out points at a given baryochemi
Externí odkaz:
http://arxiv.org/abs/2408.06473
We analyze particle number fluctuations in the crossover region near the critical endpoint of a first-order phase transition by utilizing molecular dynamics simulations of the classical Lennard-Jones fluid. We extend our previous study [V.A. Kuzniets
Externí odkaz:
http://arxiv.org/abs/2404.00476
Autor:
Poberezhnyuk, Roman, Savchuk, Oleh, Vovchenko, Volodymyr, Kuznietsov, Volodymyr, Steinheimer, Jan, Gorenstein, Mark, Stoecker, Horst
Subensemble Acceptance Method (SAM) [1,2] is an essential link between measured event-by-event fluctuations and their grand canonical theoretical predictions such as lattice QCD. The method allows quantifying the global conservation law effects in fl
Externí odkaz:
http://arxiv.org/abs/2312.17685
Autor:
Brylinski, Wojciech, Gazdzicki, Marek, Giacosa, Francesco, Gorenstein, Mark, Poberezhnyuk, Roman, Samanta, Subhasis, Stroebele, Herbert
It is well known that isospin symmetry is fulfilled to a good approximation in strong interactions, as confirmed in low-energy scattering experiments and in mass spectra of both light and heavy hadrons. In collisions of nuclei with an equal number of
Externí odkaz:
http://arxiv.org/abs/2312.07176
Autor:
Collaboration, NA61/SHINE, Adhikary, H., Adrich, P., Allison, K. K., Amin, N., Andronov, E. V., Arsene, I. -C., Bajda, M., Balkova, Y., Battaglia, D., Bazgir, A., Bhosale, S., Bielewicz, M., Blondel, A., Bogomilov, M., Bondar, Y., Brandin, A., Brylinski, W., Brzychczyk, J., Buryakov, M., Camino, A. F., Cirkovic, M., Csanád, M., Cybowska, J., Czopowicz, T., Dalmazzone, C., Davis, N., Dmitriev, A., von Doetinchem, P., Dominik, W., Dumarchez, J., Engel, R., Feofilov, G. A., Fields, L., Fodor, Z., Friend, M., Gazdzicki, M., Golosov, O., Golovatyuk, V., Golubeva, M., Grebieszkow, K., Guber, F., Igolkin, S. N., Ilieva, S., Ivashkin, A., Izvestnyy, A., Kargin, N., Karpushkin, N., Kashirin, E., Kiełbowicz, M., Kireyeu, V. A., Kolesnikov, R., Kolev, D., Koshio, Y., Kovalenko, V. N., Kowalski, S., Kozłowski, B., Krasnoperov, A., Kucewicz, W., Kuchowicz, M., Kuich, M., Kurepin, A., László, A., Lewicki, M., Lykasov, G., Lyubushkin, V. V., Mackowiak-Pawłowska, M., Majka, Z., Makhnev, A., Maksiak, B., Malakhov, A. I., Marcinek, A., Marino, A. D., Mathes, H. -J., Matulewicz, T., Matveev, V., Melkumov, G. L., Merzlaya, A., Mik, Ł., Morozov, S., Nagai, Y., Nakadaira, T., Naskret, M., Nishimori, S., Olivier, A., Ozvenchuk, V., Panova, O., Paolone, V., Petukhov, O., Pidhurskyi, I., Płaneta, R., Podlaski, P., Popov, B. A., Pórfy, B., Prokhorova, D. S., Pszczel, D., Puławski, S., Puzovic, J., Renfordt, R., Ren, L., Ortiz, V. Z. Reyna, Röhrich, D., Rondio, E., Roth, M., Rozpłochowski, Ł., Rumberger, B. T., Rumyantsev, M., Rustamov, A., Rybczynski, M., Rybicki, A., Rybka, D., Sakashita, K., Schmidt, K., Seryakov, A. Yu., Seyboth, P., Shah, U. A., Shiraishi, Y., Shukla, A., Słodkowski, M., Staszel, P., Stefanek, G., Stepaniak, J., Strikhanov, M., Ströbele, H., Šuša, T., Swiderski, Ł., Szewinski, J., Szukiewicz, R., Taranenko, A., Tefelska, A., Tefelski, D., Tereshchenko, V., Tsenov, R., Turko, L., Tveter, T. S., Unger, M., Urbaniak, M., Valiev, F. F., Veberic, D., Vechernin, V. V., Vitiuk, O., Volkov, V., Wickremasinghe, A., Witek, K., Wójcik, K., Wyszynski, O., Zaitsev, A., Zherebtsova, E., Zimmerman, E. D., Zviagina, A., Zwaska, R., Group, the Theory, Giacosa, F., Gorenstein, M. I., Poberezhniuk, R., Samanta, S.
Strong interactions preserve an approximate isospin symmetry between up ($u$) and down ($d$) quarks, part of the more general flavor symmetry. In the case of $K$ meson production, if this isospin symmetry were exact, it would result in equal numbers
Externí odkaz:
http://arxiv.org/abs/2312.06572
Autor:
Kuznietsov, Volodymyr A., Savchuk, Oleh, Poberezhnyuk, Roman V., Vovchenko, Volodymyr, Gorenstein, Mark I., Stoecker, Horst
Molecular dynamics simulations are performed for a finite non-relativistic system of particles with Lennard-Jones potential. We study the effect of liquid-gas mixed phase on particle number fluctuations in coordinate subspace. A metastable region of
Externí odkaz:
http://arxiv.org/abs/2303.09193
Autor:
Stashko, O. S., Savchuk, O. V., Satarov, L. M., Mishustin, I. N., Gorenstein, M. I., Zhdanov, V. I.
We study self-gravitating multi-pion systems (pion stars) in a state of the Bose condensate. To ensure stability of such stars, it is assumed that they are immersed in the lepton background. Two different phenomenological equations of state (EoS) for
Externí odkaz:
http://arxiv.org/abs/2303.06190
Autor:
Reichert, Tom, Savchuk, Oleh, Kittiratpattana, Apiwit, Li, Pengcheng, Steinheimer, Jan, Gorenstein, Mark, Bleicher, Marcus
We investigate the development of the directed, $v_1$, and elliptic flow, $v_2$, in heavy ion collisions in mid-central Au+Au reactions at $E_\mathrm{lab}=1.23 A$ GeV. We demonstrate that the elliptic flow of hot and dense matter is initially positiv
Externí odkaz:
http://arxiv.org/abs/2302.13919
Autor:
Savchuk, O., Poberezhnyuk, R. V., Motornenko, A., Steinheimer, J., Gorenstein, M. I., Vovchenko, V.
The time evolution of particle number fluctuations in nuclear collisions at intermediate energies ($E_{\rm lab} = 1.23-10A$ GeV) is studied by means of the UrQMD-3.5 transport model. The transport description incorporates baryonic interactions throug
Externí odkaz:
http://arxiv.org/abs/2211.13200
Autor:
Poberezhnyuk, Roman V., Vovchenko, Volodymyr, Savchuk, Oleh, Koch, Volker, Gorenstein, Mark I., Stoecker, Horst
Subensemble is a type of statistical ensemble which is the generalization of grand canonical and canonical ensembles. The subensemble acceptance method (SAM) provides general formulas to correct the cumulants of distributions in heavy-ion collisions
Externí odkaz:
http://arxiv.org/abs/2210.02960