Zobrazeno 1 - 10
of 239
pro vyhledávání: '"Gorenflo R"'
We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly,
Externí odkaz:
http://arxiv.org/abs/cond-mat/0202213
We study, both analytically and by numerical modeling the equilibrium probability density function for an non-linear L\'{e}vy oscillator with the L\'{e}vy index \alpha, 1 \leq \alpha \leq 2, and the potential energy x^4. In particular, we show that t
Externí odkaz:
http://arxiv.org/abs/cond-mat/0012155
Autor:
Ho, R., Kim, K.M., Fan, A., Gan, A., Nakamoto, S., Tong, M., Vajjala, S., Anderson, N., Viereck, J., Gorenflo, R., Morden, F., Liow, K.
Publikováno v:
In Sleep Medicine December 2022 100 Supplement 1:S170-S170
Autor:
Gorenflo, R.1 gorenflo@mi.fu-berlin.de, Vivoli, A.2 alessandro.vivoli@studio.unibo.it, Mainardi, F.3 mainardi@bo.infn.it
Publikováno v:
Journal of Mathematical Sciences. Feb2006, Vol. 132 Issue 5, p614-628. 15p. 1 Chart, 9 Graphs.
Autor:
Gorenflo, R., Abdel-Rehim, E.
Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.
By generalization of Ehrenfest’s urn model, we obtain discrete approximations to spatially one-dimensional time-fractional diffusion processes with drift towards the
By generalization of Ehrenfest’s urn model, we obtain discrete approximations to spatially one-dimensional time-fractional diffusion processes with drift towards the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::24dca1d4be3846ce9031482651f70936
https://hdl.handle.net/10525/1253
https://hdl.handle.net/10525/1253
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Nonlinear dynamics 29 (2002): 129–143.
info:cnr-pdr/source/autori:Gorenflo R, Mainardi F, Moretti D, Paradisi P/titolo:Time fractional diffusion: a discrete random walk approach/doi:/rivista:Nonlinear dynamics/anno:2002/pagina_da:129/pagina_a:143/intervallo_pagine:129–143/volume:29
info:cnr-pdr/source/autori:Gorenflo R, Mainardi F, Moretti D, Paradisi P/titolo:Time fractional diffusion: a discrete random walk approach/doi:/rivista:Nonlinear dynamics/anno:2002/pagina_da:129/pagina_a:143/intervallo_pagine:129–143/volume:29
The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order β ∈ (0, 1). From a physical view-point this generalized diffusion equation i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::6fd03871f641573208a6e89b64b87f81
http://www.cnr.it/prodotto/i/44483
http://www.cnr.it/prodotto/i/44483
This paper is concerned with the numerical analysis of the autoconvolution equation $x*x=y$ restricted to the interval [0,1]. We present a discrete constrained least squares approach and prove its convergence in $L^p(0,1),1
Publikováno v:
Mathematical Research ; 74
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::015f6e6b1672694a126db6a6204e4918
http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:228443
http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:228443