Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Gordon, Cameron McA."'
In this article we show that all cyclic branched covers of a Seifert link have left-orderable fundamental groups, and therefore admit co-oriented taut foliations and are not $L$-spaces, if and only if it is not an $ADE$ link up to orientation. This l
Externí odkaz:
http://arxiv.org/abs/2402.15914
In this article, we apply slope detection techniques to study properties of toroidal $3$-manifolds obtained by performing Dehn surgeries on satellite knots in the context of the $L$-space conjecture. We show that if $K$ is an $L$-space knot or admits
Externí odkaz:
http://arxiv.org/abs/2307.06815
In this paper we study the left-orderability of $3$-manifold groups using an enhancement, called recalibration, of Calegari and Dunfield's "flipping" construction, used for modifying $\mbox{Homeo}_+(S^1)$-representations of the fundamental groups of
Externí odkaz:
http://arxiv.org/abs/2306.10357
The $L$-space conjecture asserts the equivalence, for prime 3-manifolds, of three properties: not being an $L$-space, having a left-orderable fundamental group, and admitting a co-oriented taut foliation. We investigate these properties for toroidal
Externí odkaz:
http://arxiv.org/abs/2106.14378
Autor:
Gordon, Cameron McA
We show that there is no algorithm to decide whether or not a given 4-manifold is homeomorphic to the connected sum of 12 copies of S^2 \times S^2.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/2106.06006
We show that if a hyperbolic knot manifold $M$ contains an essential twice-punctured torus $F$ with boundary slope $\beta$ and admits a filling with slope $\alpha$ producing a Seifert fibred space, then the distance between the slopes $\alpha$ and $\
Externí odkaz:
http://arxiv.org/abs/2004.04219
We investigate the problem of characterising the family of strongly quasipositive links which have definite symmetrised Seifert forms and apply our results to the problem of determining when such a link can have an L-space cyclic branched cover. In p
Externí odkaz:
http://arxiv.org/abs/1811.08862
Let $L$ be a oriented link such that $\Sigma_n(L)$, the $n$-fold cyclic cover of $S^3$ branched over $L$, is an L-space for some $n \geq 2$. We show that if either $L$ is a strongly quasipositive link other than one with Alexander polynomial a multip
Externí odkaz:
http://arxiv.org/abs/1710.07658
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Advances in Mathematics 1 December 2019 357