Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Gorbach, Nico S."'
Gradient matching is a promising tool for learning parameters and state dynamics of ordinary differential equations. It is a grid free inference approach, which, for fully observable systems is at times competitive with numerical integration. However
Externí odkaz:
http://arxiv.org/abs/1705.07079
Gradient matching with Gaussian processes is a promising tool for learning parameters of ordinary differential equations (ODE's). The essence of gradient matching is to model the prior over state variables as a Gaussian process which implies that the
Externí odkaz:
http://arxiv.org/abs/1610.06949
Publikováno v:
In NeuroImage 1 November 2018 181:219-234
Autor:
Wenk, Philippe, Gotovos, Alkis, Bauer, Stefan, Gorbach, Nico S., Krause, Andreas, Buhmann, Joachim M.
Publikováno v:
Proceedings of Machine Learning Research, 89
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)
Proceedings of Machine Learning Research, 89
ISSN:2640-3498
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)
ISSN:2640-3498
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::867e8106c9e5a6778114091a89b22559
Publikováno v:
Machine Learning & Interpretation in Neuroimaging; 2012, p186-193, 8p
Autor:
Gorbach NS; Cortical Networks Group, Max Planck Institute for Neurological Research Cologne, Germany., Schütte C, Melzer C, Goldau M, Sujazow O, Jitsev J, Douglas T, Tittgemeyer M
Publikováno v:
Frontiers in neuroinformatics [Front Neuroinform] 2011 Sep 23; Vol. 5, pp. 18. Date of Electronic Publication: 2011 Sep 23 (Print Publication: 2011).