Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Gonze, François"'
Autor:
Gonze, François, Jungers, Raphaël M.
This article focuses on subset reachability in synchronizing automata. First, we provide families of synchronizing automata with subsets which cannot be reached with short words. These families do not fulfil Don's Conjecture about subset reachability
Externí odkaz:
http://arxiv.org/abs/1805.02540
Motivated by the Babai conjecture and the Cerny conjecture, we study the reset thresholds of automata with the transition monoid equal to the full monoid of transformations of the state set. For automata with $n$ states in this class, we prove that t
Externí odkaz:
http://arxiv.org/abs/1704.04047
We provide a counterexample to a lemma used in a recent tentative improvement of the the Pin-Frankl bound for synchronizing automata. This example naturally leads us to formulate an open question, whose answer could fix the line of proof, and improve
Externí odkaz:
http://arxiv.org/abs/1412.0975
Autor:
Gonze, François, Jungers, Raphaël M.
Cerny's conjecture is a longstanding open problem in automata theory. We study two different concepts, which allow to approach it from a new angle. The first one is the triple rendezvous time, i.e., the length of the shortest word mapping three state
Externí odkaz:
http://arxiv.org/abs/1410.4034
Autor:
Gonze, François
Finite state systems, also called automata, are key tools for modelling physical systems, for emulating computers and for text processing. These systems are composed of a set of possible states and a set of letters. The letters represent the commands
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1493::3e6e000a2c631bb1c77ea23506dcba1c
https://hdl.handle.net/2078.1/226890
https://hdl.handle.net/2078.1/226890
Autor:
Gonze, François, Jungers, Raphaël M.
Publikováno v:
Journal of Automata, Languages and Combinatorics, (2019)
This article focuses on subset reachability in synchronizing automata. First, we study the length of shortest words reaching subsets of states in synchronizing automata. We provide an automata family with subsets that cannot be reached by words short
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::baeb535206e98b4c0eaaa02da8e7cc5c
https://hdl.handle.net/2078.1/213448
https://hdl.handle.net/2078.1/213448
Autor:
Goyens, Florentin, Gonze, François, Simonetto, A, Huens, Etienne, Boucquey, j, Jungers, Raphaël M., International Conference on Research in Air Transportation (ICRAT)
N/A
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1493::8fc9fe4c181747229f541ce08bfb8141
https://hdl.handle.net/2078.1/229381
https://hdl.handle.net/2078.1/229381
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gonze, François, Jungers, Raphaël M.
Publikováno v:
Language & Automata Theory & Applications 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings; 2015, p212-223, 12p