Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Gonzalvo, Javier"'
Publikováno v:
Proceedings of 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML), PMLR 221:189-205, 2023
There has been considerable effort to better understand the generalization capabilities of deep neural networks both as a means to unlock a theoretical understanding of their success as well as providing directions for further improvements. In this p
Externí odkaz:
http://arxiv.org/abs/2405.18590
Many of the recent remarkable advances in computer vision and language models can be attributed to the success of transfer learning via the pre-training of large foundation models. However, a theoretical framework which explains this empirical succes
Externí odkaz:
http://arxiv.org/abs/2405.15706
Can we use deep learning to predict when deep learning works? Our results suggest the affirmative. We created a dataset by training 13,500 neural networks with different architectures, on different variations of spiral datasets, and using different o
Externí odkaz:
http://arxiv.org/abs/1906.01550
Autor:
Weill, Charles, Gonzalvo, Javier, Kuznetsov, Vitaly, Yang, Scott, Yak, Scott, Mazzawi, Hanna, Hotaj, Eugen, Jerfel, Ghassen, Macko, Vladimir, Adlam, Ben, Mohri, Mehryar, Cortes, Corinna
AdaNet is a lightweight TensorFlow-based (Abadi et al., 2015) framework for automatically learning high-quality ensembles with minimal expert intervention. Our framework is inspired by the AdaNet algorithm (Cortes et al., 2017) which learns the struc
Externí odkaz:
http://arxiv.org/abs/1905.00080
Finding the best neural network architecture requires significant time, resources, and human expertise. These challenges are partially addressed by neural architecture search (NAS) which is able to find the best convolutional layer or cell that is th
Externí odkaz:
http://arxiv.org/abs/1903.06236
Autor:
Alabau Gonzalvo, Javier1 jagon@alumni.uv.es, Josep Solaz-Portoles, Joan2 Joan.Solaz@uv.es, Sanjosé López, Vicente2 Vicente.Sanjose@uv.es
Publikováno v:
Revista Eureka sobre Enseñanza y Divulgación de las Ciencias. 2020, Vol. 17 Issue 1, p1-17. 17p.
Autor:
Fábregas Sánchez, Raquel, Gimeno Marco, Fernando, Tenas Gonzalvo, Javier, Hernández Jordán, Cristina
Las enfermedades crónicas que cursan con dolor crónico son cada vez más frecuentes en España, siendo el resultado de la integración de múltiples factores que ocasionan una alteración de la calidad de vida de los pacientes.Teniendo en cuenta qu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1413::fc89e6d972e34bd64912b024f18487da
http://zaguan.unizar.es/record/124798
http://zaguan.unizar.es/record/124798
Este presente estudio ha sido desarrollado en el marco de un Trabajo de Fin de Grado (TFG), del Grado de Nutrición Humana y Dietética de la Facultad de Ciencias de la Salud y del Deporte, de la Universidad de Zaragoza. El objetivo principal de este
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1413::07b10875d9a9071ef842123b2af200df
http://zaguan.unizar.es/record/120510
http://zaguan.unizar.es/record/120510
Publikováno v:
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
instname
Los pacientes con enfermedades reumáticas inflamatorias crónicas, como la artritis reumatoide y la espondiloartritis, tienen mayor riesgo para desarrollar eventos cardiovasculares que la población general. El contenido del trabajo se estructura en
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::403e1f6a6eb1f2f0c1d6cbba5814affe
http://zaguan.unizar.es/record/59003
http://zaguan.unizar.es/record/59003
Autor:
Ghasem, Hossein, Alabau-Gonzalvo, Javier, Antoniou, Fanouria, Papadopoulou, Stefania, Papaphilippou, Yannis
Publikováno v:
Scopus-Elsevier
The new design of CLIC damping rings is based on longitudinal variable bends and high field superconducting wiggler magnets. It provides an ultra-low horizontal normalised emittance of 412 nm-rad at 2.86 GeV. In this paper, nonlinear beam dynamics of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::11be4c03dcb196c79af985795659bc2f