Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Goncalves, J. V. A."'
It is established existence, uniqueness and multiplicity of solutions for a quasilinear elliptic problem problems driven by $\Phi$-Laplacian operator. Here we consider the reflexive and nonreflexive cases using an auxiliary problem. In order to prove
Externí odkaz:
http://arxiv.org/abs/1709.05530
It is established some existence and multiplicity of solution results for a quasilinear elliptic problem driven by $\Phi$-Laplacian operator. One of these solutions is built as a ground state solution. In order to prove our main results we apply the
Externí odkaz:
http://arxiv.org/abs/1703.08592
It is established existence, multiplicity and asymptotic behavior of positive solutions for a quasilinear elliptic problem driven by the $\Phi$-Laplacian operator. One of these solutions is obtained as ground state solution by applying the well known
Externí odkaz:
http://arxiv.org/abs/1610.04652
In this paper we prove that the equation $ -( r^\alpha\phi(|u'(r)|)u'(r))' = \lambda r^\gamma f(u(r)), ~0
Externí odkaz:
http://arxiv.org/abs/1502.03962
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In 2009 Loc and Schmitt established a result on sufficient conditions for multiplicity of solutions of a class of nonlinear eignvalue problems for the p-Laplace operator under Dirichlet boundary conditions, extending an earlier result of 1981 by Pete
Externí odkaz:
http://arxiv.org/abs/1310.5903
Autor:
Goncalves, J. V., Carvalho, M. L. M.
We develop arguments on convexity and minimization of energy functionals on Orlicz-Sobolev spaces to investigate existence of solution to the equation $\displaystyle -\mbox{div} (\phi(|\nabla u|) \nabla u) = f(x,u) + h \mbox{in} \Omega$ under Dirichl
Externí odkaz:
http://arxiv.org/abs/1310.5907
On Variational Multivalued Elliptic Equations on a Bounded Domain in the Presence of Critical Growth
Autor:
Goncalves, J. V., Carvalho, M. L.
We develop arguments on the critical point theory for locally Lipschitz functionals on Orlicz-Sobolev spaces, along with convexity and compactness techniques to investigate existence of solution of the multivalued equation $\displaystyle - \Delta_{\P
Externí odkaz:
http://arxiv.org/abs/1310.5908
Autor:
Goncalves, J. V., Marcial, M. R.
In a recent paper D. D. Hai showed that the equation $ -\Delta_{p} u = \lambda f(u) \mbox{in} \Omega$, under Dirichlet boundary condition, where $\Omega \subset {\bf R^N}$ is a bounded domain with smooth boundary $\partial\Omega$, $\Delta_{p}$ is the
Externí odkaz:
http://arxiv.org/abs/1310.5636
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.