Zobrazeno 1 - 10
of 142
pro vyhledávání: '"Goncalves, Felipe"'
We show that the extension map \[ \mathcal{E}_{NS}(f)(z)=\frac{f(x+y)+f(x-y)}{2}+i\frac{f(x+y)-f(x-y)}{2}\mbox{ for all }z=x+iy\in\mathbb{H}\,, \] defined by Norton and Sullivan in '96, is the only locally linear extension map taking bi-Lipschitz fun
Externí odkaz:
http://arxiv.org/abs/2409.19805
Autor:
Gonçalves, Felipe
We completely classify Fourier summation formulas, and in particular, all crystalline measures with quadratic decay. Our classification employs techniques from almost periodic functions, Hermite-Biehler functions, de Branges spaces and Poisson repres
Externí odkaz:
http://arxiv.org/abs/2312.11185
A set of vectors $S \subseteq \mathbb{R}^d$ is $(k_1,\varepsilon)$-clusterable if there are $k_1$ balls of radius $\varepsilon$ that cover $S$. A set of vectors $S \subseteq \mathbb{R}^d$ is $(k_2,\delta)$-far from being clusterable if there are at l
Externí odkaz:
http://arxiv.org/abs/2311.14082
Autor:
Gonçalves, Felipe, Vedana, Guilherme
In this paper we study the sphere packing problem in Euclidean space where we impose additional constraints on the separations of the center points. We prove that any sphere packing in dimension $48$, with spheres of radii $r$, such that \emph{no} tw
Externí odkaz:
http://arxiv.org/abs/2308.03925
We give universal bounds on the fraction of nontrivial zeros having given multiplicity for L-functions attached to a cuspidal automorphic representation of $\mathrm{GL}_m/\mathbb{Q}$. For this, we apply the higher-level correlation asymptotic of Hejh
Externí odkaz:
http://arxiv.org/abs/2303.01095
Publikováno v:
Proc. Amer. Math. Soc. Ser. B 11 (2024), 224-228
We prove an asymptotically sharp version of the Bourgain-Clozel-Kahane and Cohn-Gon\c{c}alves sign uncertainty principles for polynomials of sublinear degree times a Gaussian, as the dimension tends to infinity. In particular, we show that polynomial
Externí odkaz:
http://arxiv.org/abs/2210.01684
Autor:
Ciccone, Valentina, Gonçalves, Felipe
We establish a sharp adjoint Fourier restriction inequality for the end-point Tomas-Stein restriction theorem on the circle under a certain arithmetic constraint on the support set of the Fourier coefficients of the given function. Such arithmetic co
Externí odkaz:
http://arxiv.org/abs/2208.09441
If dividing by $p$ is a mistake, multiply by $q$ and translate, and so you'll live to iterate. We show that if we define a Collatz-like map in this form then, under suitable conditions on $p$ and $q$, almost all orbits of this map attain almost bound
Externí odkaz:
http://arxiv.org/abs/2111.06170
Autor:
Sermarini, Anna Carolina de Paula, Azevedo, João Henrique Paulino, Albuquerque, Vanessa Cardoso de, Calili, Rodrigo Flora, Gonçalves, Felipe, Jannuzzi, Gilberto
Publikováno v:
In Energy Policy April 2024 187
Autor:
Chirre, Andrés, Gonçalves, Felipe
Assuming the Riemann hypothesis we establish explicit bounds for the modulus of the log-derivative of Riemann's zeta-function in the critical strip.
Comment: To appear in Math. Z
Comment: To appear in Math. Z
Externí odkaz:
http://arxiv.org/abs/2103.06237