Zobrazeno 1 - 10
of 178
pro vyhledávání: '"Goldstein, Anna P."'
We study gradient regularity for mixed local-nonlocal problems modelled upon \[ -\Delta_p u +(-\Delta_p)^su=\mu\qquad\text{for} \quad 2-\tfrac{1}{n}
Externí odkaz:
http://arxiv.org/abs/2401.04549
For a given balanced distribution of heat sources and sinks, $Q$, we find an optimal conductivity tensor field, $\hat C$, minimizing the thermal compliance. We present $\hat C$ in a rather explicit form in terms of the datum. Our solution is in a con
Externí odkaz:
http://arxiv.org/abs/2109.14393
Autor:
Kolesnikov, Sergey, Goldstein, Anna P., Sun, Bixuan, Chan, Gabriel, Narayanamurti, Venkatesh, Anadon, Laura Diaz
Publikováno v:
In Technovation June 2024 134
We study the existence of very weak solutions to a system \[\begin{cases}-\mathrm{div} \mathcal{A}(x,D\mathbf{u})=\mathbf{\mu}\quad\text{in }\ \Omega, \mathbf{u}=0\quad\text{on }\ \partial\Omega\end{cases} \] with a datum $\mathbf{\mu}$ being a vecto
Externí odkaz:
http://arxiv.org/abs/2106.11639
We study solutions to measure data elliptic systems with Uhlenbeck-type structure that involve operator of divergence form, depending continuously on the spacial variable, and exposing doubling Orlicz growth with respect to the second variable. Point
Externí odkaz:
http://arxiv.org/abs/2102.09313
We establish pointwise estimates expressed in terms of a nonlinear potential of a generalized Wolff type for $A$-superharmonic functions with nonlinear operator $A:\Omega\times\mathbb{R}^n\to\mathbb{R}^n$ having measurable dependence on the spacial v
Externí odkaz:
http://arxiv.org/abs/2006.02172
We study properties of $\mathcal{A}$-harmonic and $\mathcal{A}$-superharmonic functions involving an operator having generalized Orlicz-growth embracing besides Orlicz case also natural ranges of variable exponent and double-phase cases. In particula
Externí odkaz:
http://arxiv.org/abs/2005.00118
Publikováno v:
In Renewable and Sustainable Energy Reviews September 2023 184
We investigate nonlinear elliptic Dirichlet problems whose growth is driven by a general anisotropic $N$-function, which is not necessarily of power type and need not satisfy the $\Delta_2$ nor the $\nabla _2$-condition. Fully anisotropic, non-reflex
Externí odkaz:
http://arxiv.org/abs/1903.00751
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.