Zobrazeno 1 - 10
of 356
pro vyhledávání: '"Gol'dshtein, V."'
Autor:
Gol'dshtein, V., Panenko, R.
We study the procedure of regularization in the context of the Lipschitz version of de Rham calculus on metric simplicial complexes with bounded geometry. It provides us with the machinery to handle the de Rham homomorphism for $L_\pi$-cohomologies.
Externí odkaz:
http://arxiv.org/abs/2312.12071
We study spectral stability estimates of the Dirichlet eigenvalues of the Laplacian in non-convex domains $\Omega\subset\mathbb R^2$. With the help of these estimates we obtain asymptotically sharp inequalities of ratios of eigenvalues in the framewo
Externí odkaz:
http://arxiv.org/abs/1811.08285
Autor:
Gol'dshtein, V., Ukhlov, A.
In this paper we discuss applications of the geometric theory of composition operators on Sobolev spaces to the spectral theory of non-linear elliptic operators. The lower estimates of the first non-trivial Neumann eigenvalues of the $p$-Laplace oper
Externí odkaz:
http://arxiv.org/abs/1801.10421
In this paper we apply estimates of the norms of Sobolev extension operators to the spectral estimates of of the first nontrivial Neumann eigenvalue of the Laplace operator in non-convex extension domains. As a consequence we obtain a connection betw
Externí odkaz:
http://arxiv.org/abs/1710.05560
We study the variation of the Neumann eigenvalues of the $p$-Laplace operator under quasiconformal perturbations of space domains. This study allows to obtain lower estimates of the Neumann eigenvalues in fractal type domains. The suggested approach
Externí odkaz:
http://arxiv.org/abs/1708.00264
In this paper we obtain lower estimates of the first non-trivial eigenvalues of the degenerate $p$-Laplace operator, $p>2$, in a large class of non-convex domains. This study is based on applications of the geometric theory of composition operators o
Externí odkaz:
http://arxiv.org/abs/1707.08867
In this paper we study spectral properties of the Neumann-Laplace operator in planar quasiconformal regular domains $\Omega\subset\mathbb R^2$. This study is based on the quasiconformal theory of composition operators on Sobolev spaces. Using the com
Externí odkaz:
http://arxiv.org/abs/1703.03577
A geometrically invariant concept of fast-slow vector fields perturbed by transport terms (describing molecular diffusion processes) is proposed in this paper. It is an extension of our concept of singularly perturbed vector fields to reaction-diffus
Externí odkaz:
http://arxiv.org/abs/1611.01341
In the current paper the so-called REaction-DIffusion Manifold (REDIM) method of model reduction is discussed within the framework of standard singular perturbation theory. According to the REDIM a reduced model for the system describing a reacting f
Externí odkaz:
http://arxiv.org/abs/1607.00486
We study the eigenvalue problem for the Neumann-Laplace operator in conformal regular planar domains $\Omega\subset\mathbb{C}$. Conformal regular domains support the Poincar\'e inequality and this allows us to estimate the variation of the eigenvalue
Externí odkaz:
http://arxiv.org/abs/1602.02954