Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Godoy, Yamile"'
We classify the nilpotent almost abelian Lie algebras admitting complex or symplectic structures. It turns out that if a nilpotent almost abelian Lie algebra admits a complex structure, then it necessarily admits a symplectic structure. Given an even
Externí odkaz:
http://arxiv.org/abs/2406.06819
Let $v$ be a unit vector field on a complete, umbilic (but not totally geodesic) hypersurface $N$ in a space form; for example on the unit sphere $S^{2k-1} \subset \mathbb{R}^{2k}$, or on a horosphere in hyperbolic space. We give necessary and suffic
Externí odkaz:
http://arxiv.org/abs/2205.04443
Let $M_{\kappa }$ be the three-dimensional space form of constant curvature $\kappa =0,1,-1$, that is, Euclidean space $\mathbb{R}^{3}$, the sphere $S^{3} $, or hyperbolic space $H^{3}$. Let $S$ be a smooth, closed, strictly convex surface in $M_{\ka
Externí odkaz:
http://arxiv.org/abs/2110.01679
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $G$ be a Lie group of even dimension and let $(g,J)$ be a left invariant anti-K\"ahler structure on $G$. In this article we study anti-K\"{a}hler structures considering the distinguished cases where the complex structure $J$ is abelian or bi-inva
Externí odkaz:
http://arxiv.org/abs/1710.03884
Autor:
Godoy, Yamile, Salvai, Marcos
Let M be a compact Riemannian manifold and let $\mu$,d be the associated measure and distance on M. Robert McCann obtained, generalizing results for the Euclidean case by Yann Brenier, the polar factorization of Borel maps S : M -> M pushing forward
Externí odkaz:
http://arxiv.org/abs/1704.05771
Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is a product s
Externí odkaz:
http://arxiv.org/abs/1511.05895
Autor:
Godoy, Yamile, Salvai, Marcos
Let H be the hyperbolic space of dimension n+1. A geodesic foliation of H is given by a smooth unit vector field on H all of whose integral curves are geodesics. Each geodesic foliation of H determines an n-dimensional submanifold M of the 2n-dimensi
Externí odkaz:
http://arxiv.org/abs/1411.6700
Autor:
Godoy, Yamile, Salvai, Marcos
We consider foliations of the whole three dimensional hyperbolic space H^3 by oriented geodesics. Let L be the space of all the oriented geodesics of H^3, which is a four dimensional manifold carrying two canonical pseudo-Riemannian metrics of signat
Externí odkaz:
http://arxiv.org/abs/1411.5701
Autor:
Anciaux, Henri, Godoy, Yamile
We give local, explicit representation formulas for n-dimensional spacelike submanifolds which are marginally trapped in the Minkowski space, the de Sitter and anti de Sitter spaces and the Lorentzian products of the sphere and the hyperbolic space b
Externí odkaz:
http://arxiv.org/abs/1209.5118