Zobrazeno 1 - 10
of 763
pro vyhledávání: '"Global optimization problem"'
Publikováno v:
Mathematics, Vol 12, Iss 7, p 965 (2024)
Particle Swarm Optimization (PSO) is facing more challenges in solving high-dimensional global optimization problems. In order to overcome this difficulty, this paper proposes a novel PSO variant of the hybrid Sine Cosine Algorithm (SCA) strategy, na
Externí odkaz:
https://doaj.org/article/c769fed4ac6c47689c0546bc8035f75a
Publikováno v:
Complex System Modeling and Simulation, Vol 2, Iss 4, Pp 288-306 (2022)
Particle swarm optimization (PSO) is a type of swarm intelligence algorithm that is frequently used to resolve specific global optimization problems due to its rapid convergence and ease of operation. However, PSO still has certain deficiencies, such
Externí odkaz:
https://doaj.org/article/39c75605b44549c09f4d74e88da31e4c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Anton S. Mikhalev, Vadim S. Tynchenko, Vladimir A. Nelyub, Nina M. Lugovaya, Vladimir A. Baranov, Vladislav V. Kukartsev, Roman B. Sergienko, Sergei O. Kurashkin
Publikováno v:
Symmetry, Vol 14, Iss 10, p 2036 (2022)
The quality of operation of neural networks in solving application problems is determined by the success of the stage of their training. The task of learning neural networks is a complex optimization task. Traditional learning algorithms have a numbe
Externí odkaz:
https://doaj.org/article/6dc29f433341429d9b975afdcba546bc
Autor:
Khalid Abdulaziz Alnowibet, Ahmad M. Alshamrani, Adel Fahad Alrasheedi, Salem Mahdi, Mahmoud El-Alem, Abdallah Aboutahoun, Ali Wagdy Mohamed
Publikováno v:
Axioms, Vol 11, Iss 9, p 483 (2022)
In this paper, a new Modified Meta-Heuristic algorithm is proposed. This method contains some modifications to improve the performance of the simulated-annealing algorithm (SA). Most authors who deal with improving the SA algorithm presented some imp
Externí odkaz:
https://doaj.org/article/a9abed8554c04b5dbc12a000a0e87b36
Autor:
Shuxia Li, Yuzhe Tian
Publikováno v:
Systems Science & Control Engineering, Vol 7, Iss 2, Pp 71-84 (2019)
We propose a new chaotic krill herd (CKH) in terms of the recently developed krill herd (KH) algorithm, to solve global numerical optimization problems. In CKH, chaos characteristics are introduced into the KH so as to further enhance its global sear
Externí odkaz:
https://doaj.org/article/588336214b384374971955eaca365686
Publikováno v:
International Journal of Computational Intelligence Systems, Vol 13, Iss 1 (2020)
Monarch butterfly optimization (MBO) algorithm is a newly-developed metaheuristic approach that has shown striking performance on several benchmark problems. In order to enhance the performance of MBO, many scholars proposed various strategies for be
Externí odkaz:
https://doaj.org/article/5c5d7c9ff29c4e77adb94acebc25149f
Autor:
Sukanta Nama, Apu Kumar Saha
Publikováno v:
Decision Science Letters, Vol 7, Iss 2, Pp 103-118 (2017)
In this study, an ensemble algorithm has been proposed, called Quasi-Oppositional Symbiosis Organisms Search (QOSOS) algorithms, by incorporating the quasi-oppositional based learning (QOBL) strategy into the newly proposed Symbiosis Organisms Search
Externí odkaz:
https://doaj.org/article/432865c0599443749f5e569468b76da8