Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Gleiciane S. Aragão"'
Publikováno v:
Journal of Differential Equations. 298:30-67
In this paper we consider the semilinear damped wave problem of the form { ( α ( t ) u t ) t − β ( t ) Δ u + γ ( t ) u t + δ ( t ) u = β ( t ) f ( u ) , x ∈ Ω , t > τ , u ( x , t ) = 0 , x ∈ ∂ Ω , t ⩾ τ , u ( x , τ ) = u τ ( x )
Publikováno v:
Differential Equations and Dynamical Systems.
Publikováno v:
Topological Methods in Nonlinear Analysis. :1-27
In this paper we analyze the asymptotic behavior of the pullback attractors for non-autonomous dynamical systems generated by a family of non-autonomous damped wave equations when some reaction terms are concentrated in a neighbourhood of the boundar
Publikováno v:
Journal of Mathematical Analysis and Applications. 462:871-899
In this paper we analyze the asymptotic behavior of the pullback attractors of a non-autonomous damped wave equation when some reaction terms are concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary as a parameter
Autor:
Simone M. Bruschi, Gleiciane S. Aragão
Publikováno v:
Mathematical Methods in the Applied Sciences. 39:3450-3460
In this paper, we analyze the behavior of a family of solutions of a nonlinear elliptic equation with nonlinear boundary conditions, when the boundary of the domain presents a highly oscillatory behavior, which is uniformly Lipschitz and nonlinear te
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We analyze the dynamics of the flow generated by a nonlinear parabolic problem when some reaction and potential terms are concentrated in a neighborhood of the boundary. We assume that this neighborhood shrinks to the boundary as a parameter $$\epsil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3312350e97c8ed71cde15d4cb7e81f20
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we investigate the behavior of a family of steady state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a $\epsilon$-neighborhood of a portion $\Gamma$ of the boundary. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b73dcb10f5e0da037cf3f8125971d865
http://arxiv.org/abs/1204.0116
http://arxiv.org/abs/1204.0116
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this work, we are interested in the dynamic behavior of a parabolic problem with nonlinear boundary conditions and delay in the boundary. We construct a reaction–diffusion problem with delay in the interior, where the reaction term is concentrat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bee3d2276a8626ec49f75e8d92e24fa3
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this work we analyze the asymptotic behavior of the solutions of a reaction-diffusion problem with delay when the reaction term is concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary, as a parameter goes to zer
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b185883d3c93cf9d422912c75d8a49a